

FINAL NEET(UG)-2020 EXAMINATION

(Held On Wednesday 14th OCTOBER, 2020)

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

- Which of the following statement is **NOT** true about acid rain?
 - (1) It is due to reaction of SO_2 , NO_2 and CO_2 with rain water
 - (2) Causes no damage to monuments like Taj Mahal.
 - (3) It is harmful for plants.
 - (4) Its pH is less than 5.6

Ans. (2)

- **Sol.** Acid rain causes to damage to monuments like Tajmahal.
- **2.** The oxidation number of the underlined atom in the following species
 - (1) Cu_2O is -1
- (2) ClO_3^- is +5
- (3) $K_2Cr_2O_7$ is + 6
- (4) $H\underline{Au}Cl_4$ is +3

Identify the incorrect option.

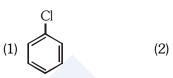
Ans. (1)

- **Sol.** Ox. state of "O" in $Cu_2O = -2$
 - Ox. state of "Cl" in $ClO_3^- = +5$
 - Ox. state of "Cr" in $K_2Cr_2O_7 = +6$
 - Ox. state of "Au" in $HAuCl_4 = +3$
 - \therefore (1) is incorrect
- **3.** Reaction of propanamide with ethanolic sodium hydroxide and bromine will give
 - (1) Ethylamine
- (2) Methylamine
- (3) Propylamine
- (4) Aniline

Ans. (1)

Sol.
$$CH_3$$
- CH_2 - C - NH_2 $\xrightarrow{Br_2/Alc.NaOH}$ CH_3 - CH_2 - NH

Hoffmann bromamide degradation reaction.

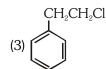

- **4.** A liquid compound (x) can be purified by steam distillation only if it is
 - (1) Steam volatile, immiscible with water
 - (2) Not steam volatile, miscible with water
 - (3) Steam volatile, miscible with water
 - (4) Not steam volatile, immiscible with water

Ans. (1)

- **Sol.** Compounds purified by steam distillation which are immiscible in water but steam volatile.
- **5.** Among the compounds shown below which one revealed a linear structure ?
 - (1) NO₂
- (2) HOCl
- (3) O_3
- (4) N_2O

Ans. (4)

- **Sol.** :N≡N→Ö: (Linear)
- **6.** Which of the following compound is most reactive in electrophilic aromatic substitution?



Ans. (4)

Sol. OH

- + R effect of –OH group enhances the reactivity in aromatic electrophilic substitution reaction.
- 7. Which of the following will **NOT** undergo $S_N 1$ reaction with \overline{O}_H ?

(1)
$$CH_2 = CH - CH_2Cl$$
 (2) $(CH_3)_3 CCl$

Ans. (3)

Sol. Reactivity in case of $S_N 1$ reaction depends upon formation of carbocation.

$$CH_2-CH_2-CI \Longrightarrow CH_2-CH_2+CI$$
Primary carbocation

is less likely to be formed (due to unstability)

- **8.** Which of the following is **not** true about chloramphenicol?
 - (1) It inhibits the growth of only grampositive bacteria.
 - (2) It is a broad spectrum antibiotic.
 - (3) It is not bactericidal.
 - (4) It is bacteriostatic.

Ans. (1)

- **Sol.** Chloramphenicol is a broad spectrum antibiotic which can inhibit the growth of gram positive bacteria and gram negative bacteria.
- **9.** Which of the following statement is correct about Bakelite?
 - (1) It is a cross linked polymer.
 - (2) It is an addition polymer.
 - (3) It is a branched chain polymer.
 - (4) It is a linear polymer.

Ans. (1)

- **Sol.** Bakelite is an example of cross-linked polymer.
- 10. If for a certain reaction $\Delta_r H$ is 30 kJ mol^{-1} at 450 K, the value of $\Delta_r S$ (in $J K^{-1} \text{ mol}^{-1}$) for which the same reaction will be spontaneous at the same temperature is
 - (1) 70
- (2) -33
- (3) 33
- (4) 70

Ans. (1)

Sol. $\Delta G = \Delta H - T \Delta S$

For spontaneous,

$$\Delta G < 0$$

$$\Delta H - T\Delta S < O$$

$$\Delta S > \frac{\Delta H}{T}$$

$$\Delta S > \frac{30 \times 10^3 \, J \; mol^{-1}}{450 \; K}$$

 $\Delta S > 66.6 \text{ J mol}^{-1} \text{ K}^{-1} \text{ (Check by options)}$

11. Match the element in column I with that in column II.

		-
(:)	lumn	-1

Column-II

- (a) Copper
- (i) Non-metal
- (b) Fluorine
- (ii) Transition metal
- (c) Silicon
- (iii) Lanthanoid
- (d) Cerium
- (iv) Metalloid

Identify the correct match:

- (1) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- (2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
- (3) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (4) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)

Ans. (2)

Sol. Copper – Transition metal

Fluorine - Non metal

Silicon - Metalloids

Cerium - Lanthanoid

- **12.** Which of the following is a free radical substitution reaction?
 - (1) Benzene with Br₂/AlCl₃
 - (2) Acetylene with HBr
 - (3) Methane with Br₂/hv
 - (4) Propene with $HBr/(C_6H_5COO)_2$

Ans. (3)

Sol.
$$\bigcirc$$
 + $Br_2 \xrightarrow{AlCl_3}$

(Aromatic electrophilic substitution)

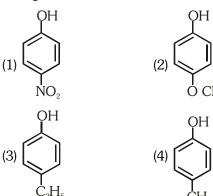
$$HC=CH \xrightarrow{HBr} CH_2=CH-Br$$
 (Electrophilic addition)

$$CH_4+Br_2 \xrightarrow{hv} CH_3-Br+HBr$$
(Free radical substitution)

$$CH_3-CH=CH_2+HBr \xrightarrow{(C_6H_5COO)_2} CH_2-CH-CH_2 \\ Br \quad H$$

(Free radical addition)

- **13.** The reaction of concentrated sulphuric acid with carbohydrates $(C_{12}H_{22}O_{11})$ is an example of
 - (1) Dehydration
- (2) Oxidation
- (3) Reduction
- (4) Sulphonation


Ans. (1)

Sol.
$$C_{12}H_{22}O_{11} \xrightarrow{Conc. H_2SO_4} 12C + 11H_2O$$

Black

14. Which of the following substituted phenols is the strongest acid?

Ans. (1)

Sol.
$$OH$$
 $NO_2(-R \text{ effect})$

-NO₂ group is electron withdrawing group. Which increases the acidic strength of phenol.

Match the compounds of Xe in column I with the **15**. molecular structure in column II

	molecular structure in column ii.		
	Column-I	Column-II	
	(a) XeF ₂	(i) Square planar	
	(b) XeF ₄	(ii) Linear	
	(c) XeO ₃	(iii) Square pyramidal	
	(d) XeOF ₄	(iv) Pyramidal	
	(1) (a)-(ii) (b)-(i) (c)-(iii)	(d)-(iv)	
	(2) (a)-(ii) (b)-(iv) (c)-(iii)	(d)-(i)	
	(3) (a)-(ii) (b)-(iii) (c)-(i)	(d)-(iv)	
	(4) (a)-(ii) (b)-(i) (c)-(iv)	(d)-(iii)	
S .	(4)		

Ans

→ Linear **Sol.** XeF₂ → Square planar → Pyramidal $XeOF_4 \rightarrow Square pyramidal$

16. The half-life for a zero order reaction having 0.02 M initial concentration of reactant is 100 s. The rate constant (in mol L^{-1} s⁻¹) for the reaction (1) 1.0×10^{-4} $(2) 2.0 \times 10^{-4}$

(4) 1.0×10^{-2}

Ans. (1)

Sol.
$$(t_{1/2})_{zero} = \frac{[A]_0}{2K}$$

(3) 2.0×10^{-3}

$$100s = \frac{0.02M}{2K}$$

$$K = \frac{0.02M}{2 \times 100} = 1 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

17. Identify the **incorrect** statement from the following:

- (1) Zirconium and Hafnium have identical radii of 160 pm and 159 pm, respectively as a consequence of lanthanoid contraction.
 - (2) Lanthanoids reveal only +3 oxidation state.
 - (3) The lanthanoid ions other than the f⁰ type and the f¹⁴ type are all paramagnetic.
 - (4) The overall decrease in atomic and ionic radii from lanthanum to lutetium is called lanthanoid contraction.

Ans. (2)

Sol. Lanthanoids shows general oxidation state +3 but some elements can shows +2 as well as +4.

18. Match the following aspects with the respective

me	tal.		
	Aspects		Metal
(a)	The metal	(i)	Scandium
	which reveals		
	a maximum		
	number of		
	oxidation states		
(b)	The metal	(ii)	Copper
	although placed		
	in 3d block is		
	considered not		
	as a transition		
	element		
(c)	The metal	(iii)	Manganese
	which does not		
	exhibit variable		
	oxidation states		_
(d)	The metal	(iv)	Zinc
	which in +1		
	oxidation state in		
	aqueous solution		
	undergoes		
.	disproportionation		
Sel	ect the correct option	:	

- (1) (a)-(i) (b)-(iv) (c)-(ii) (d)-(iii)
- (2) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
- (3) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)
- (4) (a)-(ii) (b)-(iv) (c)-(i) (d)-(iii)

Ans. (2)

Sol. In the given options

The metal which reveals a maximum number of oxidation state \rightarrow Mn

The metal although placed in 3d block is considered not as a transition element is \rightarrow Zn

The metal which does not exhibit variable oxidation state is \rightarrow Sc (only +3)

The metal which in +1 oxidation state in aqueous solution undergoes disproportionation is \rightarrow Cu

- 19. If 8g of a non-electrolyte solute is dissolved in $114\,\mathrm{g}$ of n-octane to reduce its vapour pressure to 80%, the molar mass (in g mol⁻¹) of the solute is [Given that molar mass of n-octane is $114\,\mathrm{g}$ mol⁻¹]
 - (1) 40
- (2)60

- (3) 80
- (4) 20

Ans. (1)

Sol. Assuming dilute solution,

$$\frac{P_0 - P_s}{P_s} \approx \frac{P_0 - P_s}{P_0} = \frac{n_{solute}}{n_{solvent}}$$

Let $P_0 = 100$, V.P reduced to 80%, $\therefore P_s = 80$

$$\frac{100 - 80}{100} = \frac{8 / m}{114 / 114}$$

$$m = 40$$

20. Match the coordination number and type of hybridisation with distribution of hybrid orbitals in space based on Valence bond theory.

space based on valence bond meory.		
Coordination	Distribution	
number and	of hybrid	
type of	orbitals	
hybridisation	in space	
(a) $4, sp^3$	(i) trigonal	
	bipyramidal	
(b) 4 , dsp^2	(ii) octahedral	
(c) 5, sp ³ d	(iii) tetrahedral	
(d) 6 , d^2sp^3	(iv) square planar	

Select the correct option:

- (1) (a)-(ii) (b)-(iii) (c)-(iv) (d)-(i)
- (2) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)
- (3) (a)-(iv) (b)-(i) (c)-(ii) (d)-(iii)
- (4) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii)

Ans. (2)

Sol. sp^3 – tetrahedral, dsp^2 - square planar sp^3d – trigonal bipyramidal, d^2sp^3 -octahedral

- **21.** The number of angular nodes and radial nodes in 3s orbital are
 - (1) 0 and 2, respectively
 - (2) 1 and 0, respectively
 - (3) 3 and 0, respectively
 - (4) 0 and 1, respectively

Ans. (1)

Sol. No. of angular nodes = ℓ

No. of Radial nodes = $n-\ell-1$

For 3s; n = 3 and $\ell = 0$

 \therefore No. of angular nodes = 0

 \therefore No. of radial nodes = 2

- **22.** Identify the correct statement from the following.
 - (1) The order of hydration enthalpies of alkaline earth cations

$$Be^{2+} < Mg^{2+} < Ca^{2+} < Sr^{2+} < Ba^{2+}$$

- (2) Lithium and Magnesium show some similarities in their physical properties as they are diagonally placed in periodic table.
- (3) Lithium is softer among all alkali metals.
- (4) Lithium chloride is deliquescent and crystallises as a hydrate, LiCl· H_2O .

Ans. (2)

- **Sol.** Li & Mg shows diagonal relationship that's why they shows similariety in their physical properties.
- **23.** Deficiency of which vitamin causes osteomalacia?
 - (1) Vitamin A
 - (2) Vitamin D
 - (3) Vitamin K
 - (4) Vitamin E

Ans. (2)

- **Sol.** Deficiency of vitamin D causes osteomalacia (soft bones and joint pain in adults)
- **24.** Identify the wrongly matched pair.

Molecule	Shape or geometry	
	of molecule	
(1) $PC1_5$	Trigonal planar	
(2) SF_6	Octahedral	
(3) $BeCl_2$	Linear	
(4) NH_3	Trigonal pyramidal	

Ans. (1)

Sol. PCl₅ - Trigonal bipyramidal

25.
$$CH_3CH_2CH = CH_2 \xrightarrow{B_2H_6} Z$$

What is Z?

(1) CH₃CH₂CH₂CH₂OH

- (3) CH₃CH₂CH₂CHO
- (4) CH₃CH₂CH₂CH₃

Ans. (1)

Sol.
$$CH_3$$
– CH_2 – $CH=CH_2$ $\xrightarrow{1.BH_3.THF}$ $\xrightarrow{2.H_2O,H_2O_2,\bar{O}H}$

(Hydroboration-oxidation)

- Identify the reaction from following having top **26**. position in EMF series (Std.red. potential) according to their electrode potential at 298 K.
 - (1) $Mg^{2+} + 2e^{-} \rightarrow Mg_{(s)}$
 - (2) $Fe^{2+} + 2e^{-} \rightarrow Fe_{(s)}$
 - (3) $Au^{3+} + 3e^{-} \rightarrow Au_{(s)}$
 - (4) $K^+ + le^- \rightarrow K_{(s)}$

Ans. (3)

- **Sol.** According to electrode potential series,
 - $Au^{+3} + 3e^{-} \rightarrow Au_{(s)}$ (has topmost position \Rightarrow max. SRP)
- **27**. Match the elements in Column I with methods of purification in Column II.

Column I

Column II

- (a) Boron
- (i) Van Arkel method
- (b) Tin
- (ii) Mond's process
- (c) Zirconium
- (d) Nickel
- (iii) Liquation
- (iv) Zone refining
- (1) (a)-(iv) (b)-(iii) (c)-(i) (d)-(ii)
- (2) (a)-(iv) (b)-(iii) (c)-(ii) (d)-(i)
- (3) (a)-(ii) (b)-(i) (c)-(iv) (d)-(iii)
- (4) (a)-(iii) (b)-(iv) (c)-(i) (d)-(ii)

Ans. (1)

- **Sol.** B Purified by Zone Refining
 - Sn Liquation
 - Zr Van arkel method
 - Ni Mond's process

- 28. Which among the following salt solutions is basic in nature?
 - (1) Ammonium chloride
 - (2) Ammonium sulphate
 - (3) Ammonium nitrate
 - (4) Sodium acetate

Ans. (4)

- CH₃COONa ⇒ Salf of CH₃COOH(WA) + NaOH (SB) Sol.
 - : Solution of CH₃COONa shows basic nature.
- **29**. In which of the sols, the colloidal particles are with negative charge?
 - $(1) \text{TiO}_2$
 - (2) Haemoglobin
 - (3) Starch
 - (4) Hydrated $A\ell_2O_3$

Ans. (3)

- Sol. Starch is example of negative sol.
- **30**. Which of the following acid will form an (a) Anhydride on heating and (b) Acid imide on strong heating with ammonia?

Ans. (1)

Sol.

31. In a typical fuel cell, the reactants (R) and product (P) are :-

(1)
$$R = H_{2(q)}, O_{2(q)}; P = H_2O_{2(\ell)}$$

(2)
$$R = H_{2(q)}, O_{2(q)}; P = H_2O_{(\ell)}$$

(3)
$$R = H_{2(q)}, O_{2(q)}, Cl_{2(q)}; P = HClO_{4(aq)}$$

(4)
$$R = H_{2(q)}, N_{2(q)}; P = NH_{3(aq)}$$

Ans. (2)

Sol. In typical fuel cell

Reactants = H_2 , O_2

Products = H_2O

32. In collision theory of chemical reaction, Z_{AB} represents

- (1) the fraction of molecules with energies greater than $\boldsymbol{E}_{\!\boldsymbol{a}}$
- (2) the collision frequency of reactants, A and B
- (3) steric factor
- (4) the fraction of molecules with energies equal to E_a

Ans. (2)

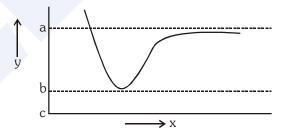
Sol. $Z_{AB} = Collision frequency$

33. Which of the following statement is **not** true about glucose?

- (1) It is an aldohexose.
- (2) It contains five hydroxyl groups.
- (3) It is a reducing sugar.
- (4) It is an aldopentose.

Ans. (4)

Sol. CHO It is an aldohexose sugar.


(CHOH)₄

I

CH₂OH

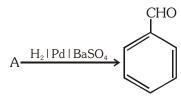
Glucose

34. The potential energy (y) curve for H₂ formation as a function of internuclear distance (x) of the H atoms is shown below.

The bond energy of H_2 is :

- (1) (b a)
- (2) $\frac{(c-a)}{2}$
- $(3) \quad \frac{(b-a)}{2}$
- (4) (c a)

Ans. (1)


Sol. As per the given curve bond energy is the amount of energy is released during the bond formation is

$$i.e. = Final - Initial$$

$$= b - a$$

35. Identify compound (A) in the following reaction:

- (1) Benzoyl chloride
- (2) Toluene
- (3) Acetophenone
- (4) Benzoic acid

Ans. (1)

36. How many (i) sp² hybridised carbon atoms and (ii) π bonds are present in the following compound?

- (1) 7, 5
- (2) 8, 6
- (3) 7, 6
- (4) 8, 5

Ans. (3)

Sol.
$$sp^{2}$$
 sp^{2} $C = C - C - C - C - C + c$

7-sp² carbons, 6π bonds

37. At standard conditions, if the change in the enthalpy for the following reaction is -109 kJ mol^{-1}

$$H_{2(g)} + Br_{2(g)} \rightarrow \ 2HBr_{(g)}$$

Given that bond energy of H_2 and Br_2 is $435\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ and $192\,\mathrm{kJ}\,\mathrm{mol}^{-1}$, respectively, what is the bond energy (in $\mathrm{kJ}\,\mathrm{mol}^{-1}$) of HBr?

- (1) 368
- (2)736
- (3)518
- (4) 259

Ans. (1)

Sol.
$$\Delta H = \Sigma (B.E)_{Reactants} - \Sigma (B.E)_{Products}$$

 $-109 = [B.E_{(H-H)} + B.E_{(Br-Br)}] - [2 \times B.E_{(H-Br)}]$
 $-109 = 435 + 192 - 2 \times B.E_{(H-Br)}$

$$B.E_{(H-Br)} = \frac{435 + 192 + 109}{2} = 368 \text{ KJ/mol}$$

- **38.** The minimum pressure required to compress 600 dm^3 of a gas at 1 bar to 150 dm^3 at 40°C is
 - (1) 4.0 bar
- (2) 0.2 bar
- (3) 1.0 bar
- (4) 2.5 bar

Ans. (1)

Sol. By Boyle's law

$$P_1V_1 = P_2V_2$$

1 bar ×
$$600 \text{dm}^3 = P_2 \times 150 \text{ dm}^3$$

$$P_2 = 4 \text{ bar}$$

- **39.** What is the role of gypsum, CaSO₄.2H₂O in setting of cement? Identify the correct option from the following:
 - (1) to fasten the setting process
 - (2) to provide water molecules for hydration process
 - (3) to help to remove water molecules
 - (4) to slow down the setting process

Ans. (4)

- **Sol.** The purpose of adding gypsum is only to slow down the process of setting of cement so that it gets sufficiently hardened
- **40.** Which of the following oxide is amphoteric in nature?
 - $(1) SnO_2$
- $(2) SiO_2$
- (3) GeO₂
- $(4) CO_2$

Ans. (1)

- **Sol.** SnO_2 amphoteric
- **41.** Which one of the following reactions does not come under hydrolysis type reaction?
 - (1) $SiCl_{4(1)} + 2H_2O_{(1)} \rightarrow SiO_{2(s)} + 4HCl_{(aq)}$
 - (2) $\text{Li}_3N_{(s)} + 3H_2O_{(l)} \rightarrow NH_{3(g)} + 3\text{Li}OH_{(aq)}$
 - (3) $2F_{2(g)} + 2H_2O_{(I)} \rightarrow 4HF_{(aq)} + O_{2(q)}$
 - (4) $P_4O_{10(s)} + 6H_2O_{(l)} \rightarrow 4H_3PO_{4(aq)}$

Ans. (3)

Sol.
$$2F_{2(g)} + 2H_2O_{(\ell)} \longrightarrow 4HF_{(aq)} + O_{2(g)}$$

It's a type of Redox reaction.

- **42.** Which one of the following compounds shows both, Frenkel as well as Schottky defects?
 - (1) AgBr
 - (2) AgI
 - (3) NaCl
 - (4) ZnS
- Ans. (1)
- **Sol.** AgBr shows both schottky and frenkel defect
- **43.** One mole of carbon atom weighs $12 \, g$, the number of atoms in it is equal to, (Mass of carbon $12 \, is$ $1.9926 \times 10^{-23} \, g$)
 - (1) 1.2×10^{23}
 - (2) 6.022×10^{22}
 - (3) 12×10^{22}
 - (4) 6.022×10^{23}
- Ans. (4)
- **Sol.** 1 mole of carbon = 6.022×10^{23} atoms

- **44.** Isotonic solutions have same
 - (1) vapour pressure
 - (2) freezing temperature
 - (3) osmotic pressure
 - (4) boiling temperature
- Ans. (3)
- **Sol.** Isotonic solutions have same osmotic pressure.
- **45.** The solubility product for a salt of the type AB is 4×10^{-8} . What is the molarity of its standard solution?
 - (1) $2 \times 10^{-4} \text{ mol/L}$
 - (2) $16 \times 10^{-16} \text{ mol/L}$
 - (3) $2 \times 10^{-16} \text{ mol/L}$
 - (4) $4 \times 10^{-4} \text{ mol/L}$
- Ans. (1)
- **Sol.** K_{sp} for $AB = s^2 = 4 \times 10^{-8}$
 - \therefore Molarity of solution = solubility = $\sqrt{K_{sp}}$
 - $= \sqrt{4 \times 10^{-8}}$
 - $= 2 \times 10^{-4} \text{ mol/L}$