NEET(UG)-2018 TEST PAPER WITH ANSWER \& SOLUTION (HELD ON SUNDAY 06th MAY, 2018)

CHEMISTRY

46. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
(1) 1.4
(2) 3.0
(3) 2.8
(4) 4.4

Ans. (3)
Sol.
$\mathrm{HCOOH} \xrightarrow[\text { Dehyrating Agent }]{\mathrm{H}_{\mathrm{SO}_{4}}} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\binom{\mathrm{H}_{2} \mathrm{O}$ abosrbed }{ by H2 $_{2} \mathrm{H}_{4}}$
$(\text { moles })_{i}=\frac{2.3}{46}=\frac{1}{20} \quad 0 \quad 0$
(moles) $_{\mathrm{f}} \quad 0 \quad \frac{1}{20} \quad \frac{1}{20}$

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

[$\mathrm{H}_{2} \mathrm{O}$ absorbed by $\mathrm{H}_{2} \mathrm{SO}_{4}$]
$\left(\right.$ moles $_{i} \quad \frac{4.5}{90}=\frac{1}{20} \quad 0 \quad 0 \quad 0$
$\begin{array}{lllll}\text { (moles) }_{\mathrm{f}} & 0 & \frac{1}{20} & \frac{1}{20} & \frac{1}{20}\end{array}$
CO_{2} is absorbed by KOH .
So the remaning product is only CO .
moles of CO formed from both reactions
$=\frac{1}{20}+\frac{1}{20}=\frac{1}{10}$
Left mass of $\mathrm{CO}=$ moles \times molar mass

$$
\begin{aligned}
& =\frac{1}{10} \times 28 \\
& =2.8 \mathrm{~g} \text { Ans. }
\end{aligned}
$$

47. Nitration of aniline in strong acidic medium also gives m-nitroaniline because
(1) In spite of substituents nitro groupalways goes to only m-position.
(2) In electrophilic substitution reactions amino group is meta directive.
(3) In absence of substituents nitro group always goes to m-position
(4) In acidic (strong) medium aniline is present as aniliniumion.

Ans. (4)
51. In the reaction

the electrophile involved is
(1) dichloromethyl cation $\left(\stackrel{\oplus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
(2) formyl cation $(\stackrel{\oplus}{\mathrm{C}} \mathrm{HO})$
(3) dichloromethyl anion
$\left(\stackrel{\ominus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
(4) dichlorocarbene (: CCl_{2})

Ans. (4)
Sol.

52. Carboxylic acid have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
(1) formation of intramolecular H -bonding
(2) formation of carboxylate ion
(3) more extensive association of carboxylic acid via van der Waals force of attraction
(4) formation of intermolecular H -bonding.

Ans. (4)

Sol. Carboxylic acid has higher boiling point than aldehyde, ketone and even al cohols of comparable molecular mass.

This is due to more extensive association through intermolecular H -bonding.

53. Compound $\mathrm{A}, \mathrm{C}{ }_{8} \mathrm{H}_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.
A and Y are respectively
(1)

(2)

(3)

(4)

Ans. (3)
Sol. Hal oform reaction is shown by compound having

54. The correct difference between first- and second-order reaction is that
(1) the rate of afirst-order reaction does not depend on reactant concentration; the rate of a secondorder reaction does depend on reactant concentrations.
(2) the half-life of a first-order reaction does not depend on $[\mathrm{A}] 0$; the half-life of a second-order reaction does depend on $[\mathrm{A}] \quad 0$
(3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed.
(4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations

Ans. (2)
Sol. $\quad\left(t_{1 / 2}\right) 1^{\text {st }}$ order $=$ Independent of Concentration
$\left(\mathrm{t}_{1 / 2}\right) 2^{\text {nd }}$ order $\propto \frac{1}{[\mathrm{~A}]_{0}}$
55. Among $\mathrm{CaH} 2, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
(1) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
(2) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
(3) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
(4) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$

Ans. (1)
Sol. $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
Smaller the size of cation, more will be its polarising power. Hence BeH 2 will be least ionic.
56. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

Then the species undergoing disproportionation is:-
(1) BrO_{3}^{-}
(2) BrO_{4}^{-}
(3) Br_{2}
(4) HBrO

Ans. (4)
Sol. Calculate E° cell corresponding to each compound under going disproportionation reaction. The reaction for which E° cell comes out +ve is spontaneous.
$\mathrm{HBrO} \longrightarrow \mathrm{Br}_{2} \quad \mathrm{E}^{\circ}=1.595, \mathrm{SRP}$ (cathode)
$\mathrm{HBrO} \longrightarrow \mathrm{BrO}_{3}^{-} \quad \mathrm{E}^{\circ}=-1.5 \mathrm{~V}$, SOP (Anode)
$2 \mathrm{HBrO} \longrightarrow \mathrm{Br}_{2}+\mathrm{BrO}_{3}^{-}$
$\mathrm{E}_{\text {cell }}^{\circ}=\mathrm{SRP}$ (cathode) -SRP (Anode)

$$
\begin{aligned}
& =1.595-1.5 \\
& =0.095 \mathrm{~V}
\end{aligned}
$$

$\mathrm{E}_{\text {cell }}^{\circ}>0 \Rightarrow \Delta \mathrm{G}^{\circ}<0$ [spontaneous]
57. In which case is the number of molecules of water maximum?
(1) 18 mL of water
(2) 0.18 g of water
(3) 0.00224 L of water vapours at 1 atm and 273 K
(4) $10^{-3} \mathrm{~mol}$ of water

Ans. (1)
Sol. (1) 18 mL water

$$
\text { As } \mathrm{d}_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~g} / \mathrm{mL} \quad \text { So } \mathrm{W} \quad \mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}, \quad \begin{aligned}
\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} & =\frac{18}{18}=1 \\
\text { molecules } & =1 \times \mathrm{N} \quad \mathrm{~A}
\end{aligned}
$$

(2) 0.18 g of water

$$
\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{0.18}{18}=0.01
$$

(molecules) $\mathrm{H}_{2} \mathrm{O}=0.01 \times \mathrm{N} \quad \mathrm{A}$
(3) $\left(\mathrm{V}_{\mathrm{H}_{2}} \mathrm{O}()_{\mathrm{STP}}=0.00224 \mathrm{~L}\right.$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{V}}{22.4}=\frac{0.00224}{22.4}=0.0001 \\
& \text { molecules }=0.0001 \times \mathrm{N} \quad \mathrm{~A} \\
& \text { (4) } \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=10^{-3} \\
& \text { (molecules) } \mathrm{H}_{2} \mathrm{O}=10^{-3} \times \mathrm{N}_{\mathrm{A}}
\end{aligned}
$$

58. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 s^{2} 2 s^{2} 2 p^{3}$, the simplest formula for this compound is
(1) $\mathrm{Mg}_{2} \mathrm{X}_{3}$
(2) MgX_{2}
(3) $\mathrm{Mg}_{2} \mathrm{X}$
(4) $\mathrm{Mg}_{3} \mathrm{X}_{2}$

Ans. (4)
Sol. \quad Magnesium ion $=\mathrm{Mg}^{+2}$
$\mathrm{X}=$ Nitrogen \quad Nitrogen ion $=\mathrm{N}^{-3}$

59. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
(1) $\frac{\sqrt{3}}{\sqrt{2}}$
(2) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
(3) $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
(4) $\frac{1}{2}$

Ans. (3)
Sol. BCC
$4 r=\sqrt{3} a$
FCC
$a=\frac{4 r}{\sqrt{3}}$
$4 \mathrm{r}=\sqrt{2} \mathrm{a}$
$\frac{d_{\mathrm{BCC}}}{\mathrm{d}_{\mathrm{FCC}}}=\frac{\frac{\mathrm{Z}_{\mathrm{BCC}} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \mathrm{a}^{3}}}{\frac{\mathrm{Z}_{\mathrm{FCC}} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \mathrm{a}^{3}}}=\frac{\frac{2 \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}}\left(\frac{4 \mathrm{r}}{\sqrt{3}}\right)^{3}}}{\frac{4 \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times\left(\frac{4 \mathrm{r}}{\sqrt{2}}\right)^{3}}}=\frac{3}{4} \sqrt{\frac{3}{2}}$
60. Which one is a wrong statement?
(1) Total orbital angular momentum of electron in 's' orbital is equal to zero
(2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
(3) The electronic configuration of N atom is

(4) The value of m_{f} for $\mathrm{d}_{z}{ }^{2}$ is zero

Ans. (3)

Sol. The correct configuration of ' N ' is

61. Consider the following species:

$$
\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO} \text { and } \mathrm{CN}
$$

Which one of these will have thehighest bond order?
(1) NO
(2) CN^{-}
(3) CN^{+}
(4) CN

Ans. (2)
Sol. IonSpecies Total electron Bond order

NO	15	2.5
CN^{-}	14	3
CN^{+}	12	2
CN	13	2.5

62. Which of the following statements is not true for halogens?
(1) All form monobasic oxyacids.
(2) All are oxidizing agents.
(3) All but fluorine show positive oxidation states.
(4) Chlorine has thehighest electron-gainenthalpy.

Ans. (Bonus)
63. Which one of the following elements is unable to form MF_{6}^{3-} ion?
(1) Ga
(2) AI
(3) B
(4) In

Ans. (3)
Sol. MF_{6}^{-3}
Boron belongs to $2{ }^{\text {nd }}$ period and it does not have vacant d-orbital.
64. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl ' is
(1) one
(2) two
(3) four
(4) three

Ans. (2)

Sol.

2 lone pair at equitorial position.
65. Considering Ellingham diagram, which of the following metals can be used to reduce alumina ?
(1) Fe
(2) Zn
(3) Mg
(4) Cu

Ans. (3)
Sol. Mg has more- $\Delta \mathrm{G}$ value then alumina. So it will be in the lower part of Ellingham diagram. Metals which has more- Δ Gvalue can reduce those metals oxide which has less - $\Delta \mathrm{G}$ value.
66. The correct order of atomic radii in group 13 elements is
(1) $\mathrm{B}<\mathrm{Al}<\mathrm{In}<\mathrm{Ga}<\mathrm{Tl}$
(2) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
(3) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<$ In
(4) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$

Ans. (4)
Sol. Ingroup 13due to transition contraction $[\mathrm{Al}>\mathrm{Ga}]$
67. The correct order of N -compounds in its decreasing order of oxidation states is
(1) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
(2) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
(3) $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$

Ans. (1)
Sol. $\stackrel{+5}{\mathrm{HNO}_{3}}, \stackrel{+2}{\mathrm{NO}}, \stackrel{0}{\mathrm{~N}_{2}}, \stackrel{-3}{\mathrm{NH}_{4}} \mathrm{Cl}$
68. On which of the following properties does coagulating power of an ion depend?
(1) The magnitude of the charge on the alone
(2) Size of the ion alone
(3) Both magnitude and sign of the charge the ion
(4) The sign of charge on the ion al one

Ans. (3)
Sol. According to Hardy Schulze rule : The coagulating power of anion depend on both magnitude and sign of the charge of the ion.
69. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
a. $\quad 60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
b. $55 \mathrm{~mL} \frac{\mathrm{M}_{10}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
c. $75 \mathrm{~mL} \frac{\mathrm{M}_{\mathrm{HCl}}}{5}+25 \mathrm{~mL} \frac{\mathrm{M}_{\mathrm{NaOH}}}{5}$
d. $\quad 100 \mathrm{~mL} \frac{\mathrm{M}_{\mathrm{HCl}}}{10}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?
(1) b
(2) a
(3) d
(4) c

Ans. (4)
Sol. As $N_{1} V_{1}>N_{2} V_{2}$
So acid is left at the end of reaction

$$
\begin{aligned}
\mathrm{N}_{\text {final solution }}=\left[\mathrm{H}^{+}\right] & =\frac{\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}} \\
& =\frac{\frac{1}{5} \times 75-\frac{1}{5} \times 25}{75+25} \\
& =\frac{1}{10}=0.1 \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & =1
\end{aligned}
$$

70. The solubility of BaSO_{4} in water $2.42 \times 10{ }^{3} \mathrm{gL}^{-1}$ at 298 K . The value of solubility product (K sp) will be
(Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \mathrm{~mol}^{-1}$)
(1) $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(2) $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(3) $1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(4) $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$

Ans. (1)
Sol. solubility of $\mathrm{BaSO}_{4}=2.42 \times 10^{-3} \mathrm{gL}^{-1}$

$$
\begin{aligned}
& \therefore \mathrm{s}=\frac{2.42 \times 10^{-3}}{233}=1.038 \times 10 \mathrm{~mol} \mathrm{~L}^{-1} \\
& \begin{aligned}
\mathrm{K}_{\mathrm{sp}}= & \mathrm{s}^{2} \\
& =\left(1.038 \times 10^{-5}\right)^{2} \\
& =1.08 \times 10{ }^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}
\end{aligned}
\end{aligned}
$$

71. Given vander Waal s constant for $\mathrm{NH} \quad 3, \mathrm{H}_{2}$ and CO_{2} are respectively $4.17,0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied?
(1) NH_{3}
(2) H_{2}
(3) O_{2}
(4) CO_{2}

Ans. (1)
Sol. Critical temperature \propto vanderwaal constant(a) maximum "a" \Rightarrow gas with maximum $T \quad \mathrm{C} \Rightarrow$ easiest liquification $=\mathrm{NH}_{3}$
72 The compound A on treatment with Nagives B, and with PCl_{5} gives $\mathrm{C} . \mathrm{B}$ and C react together to give diethyl ether. A, B and C are in the order
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Ans. (4)
Sol. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{Na}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\circ} \stackrel{\oplus}{\mathrm{Na}}$

73. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
(1) $\mathrm{CH} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(4) CH_{4}

Ans. (4)

Sol.

$$
\mathrm{CH}_{4} \xrightarrow[\text { hv }]{\mathrm{Br}_{2}} \mathrm{CH}_{3}-\mathrm{Br} \xrightarrow[\text { ether }]{\mathrm{Na}} \mathrm{CH}_{3}-\mathrm{CH}_{3}
$$

(less than four ' C ')
74. The compound $\mathrm{C}{ }_{7} \mathrm{H}_{8}$ undergoes the following reactions :

The product ' C ' is
(1) m-bromotoluene
(2) o-bromotoluene
(3) 3-bromo-2,4,6-trichlorotoluene
(4) p-bromotoluene

Ans. (1)
Sol.

75. Which oxide of nitrogen is not acommon pollutant introduced into the atmosphere both due to natural and human activity?
(1) $\mathrm{N}_{2} \mathrm{O}_{5}$
(2) NO_{2}
(3) $\mathrm{N}_{2} \mathrm{O}$
(4) NO

Ans. (1)
Sol. Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ occurs naturally in environment. In automobileengine, when fossil is burnt dinitrogen \& dioxygen combine to yield NO \& NO 2
76. For the redox reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced equation are

	MnO_{4}^{-}	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	H^{+}
(1)	16	5	2
(2)	2	5	16
(3)	2	16	5
(4)	5	16	2

Ans. (2)

Sol. $\quad \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2} ; 5 e^{-}$gain

$$
\begin{equation*}
{ }_{(+3)}^{\mathrm{C}_{2}} \mathrm{O}_{4}^{-2} \longrightarrow \mathrm{CO}_{2} ; 2 e^{(+4)} \text { loss } \tag{2}
\end{equation*}
$$

multiplying (1) by 2 and (2) by 5 to balance e

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{-2}-2 \mathrm{Mn}^{+2} 40 \mathrm{CO}{ }_{2}
$$

on balancing charge;

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{-2}+16 \mathrm{H}^{+}-\quad 8 \mathrm{Mn}^{+2} 10 \mathrm{CO}_{2} 8 \mathrm{H} \mathrm{O}_{2}
$$

77. Which one of the following conditions will favour maximum formation of the product in the reaction,
$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} \mathrm{H}=-\mathrm{X} \mathrm{kJ}$?
(1) Low temperature and high pressure
(2) Low temperature and low pressure
(3) High temperature and high pressure
(4) High temperature and low pressure

Ans. (1)
Sol. For reaction $\Delta \mathrm{H}=-$ ve and $\Delta \mathrm{n}_{\mathrm{g}}=-\mathrm{ve}$
\therefore High P, Low T, favour product formation.
78. The correction factor 'a' to the ideal gas equation corresponds to
(1) density of the gas molecules
(2) volume of the gas molecules
(3) electric field present between the gas molecules
(4) forces of attraction between the gas molecules

Ans. (4)
Sol. Vanderwaal constant (a) \propto forces of attraction.
79. Wheninitial concentration of the reactant is doubled, the half-life period of a zero order reaction
(1) is halved
(2) is doubled
(3) is tripled
(4) remains unchanged

Ans. (2)
Sol. $\quad\left(\mathrm{t}_{1 / 2}\right)_{\text {zero }}=\frac{[\mathrm{A}]_{0}}{2 \mathrm{~K}}$
\therefore If $[A]_{0}=$ doubled, $t_{1 / 2}=$ doubled
80. The bond dissociation energies of $\mathrm{X} \quad 2, \mathrm{Y}_{2}$ and XY are in the ratio of 1:0.5:1. Δ H for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. The bond dissociation energy of X_{2} will be
(1) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (3)
Sol. let B.E. of $\mathrm{x}_{2}, \mathrm{y}_{2} \& \mathrm{xy}$ are $\mathrm{x} \mathrm{kJ} \mathrm{mol}^{-1}$, $0.5 \mathrm{x} \mathrm{kJ} \mathrm{mol}^{-1}$ and $\mathrm{x} \mathrm{kJ} \mathrm{mol}{ }^{-1}$ respectively
$\frac{1}{2} \mathrm{x}_{2}+\frac{1}{2} \mathrm{y}_{2} \rightarrow \mathrm{xy} ; \Delta \mathrm{H}=-200 \mathrm{kJmol}^{-1}$
$\Delta \mathrm{H}=-200=\Sigma\left(\right.$ B. $\mathrm{E}_{\text {Reactant }}-\Sigma(\text { B.E })_{\text {Product }}$

$$
=\left[\frac{1}{2} \times(\mathrm{x})+\frac{1}{2} \times(0.5 \mathrm{x})\right]-[1 \times(\mathrm{x})]
$$

B.E of $X_{2}=x=800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
81. Identify the major products P, Q and R in the following sequence of reaction:
 P

Q
R
(1)

(2)

(3)

(4)

Ans. (4)
Sol.
Mech: $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{CH}_{3}-\mathrm{CH}_{2} \stackrel{\oplus}{\mathrm{C}}{ }_{2}+{ }_{2} \mathrm{AlCl}_{4}$

82. Which of the following compounds can form a zwitterion?
(1) Aniline
(2) Acetanilide
(3) Benzoic acid
(4) Glycine

Ans. (4)
Sol. The molecule which forms zwitter ion is glycine.

Zwitter ion
83. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right.$] is
(1) Geometrical isomerism
(2) Coordination isomerism
(3) Ionization isomerism
(4) Linkage isomerism

Ans. (1)

Sol.

Trans
cis
84. Which one of the following ions exhibits $d-d$ transition and paramagnetism as well ?
(1) CrO_{4}^{2-}
(2) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(3) MnO_{4}^{-}
(4) MnO_{4}^{2-}

Ans. (4)
Sol. $\mathrm{CrO}_{4}^{-2} \quad \mathrm{Cr}^{+6}$ diamagnetic
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} \quad \mathrm{Cr}^{+6}$ diamagnetic
$\mathrm{MnO}_{4}^{-} \quad \mathrm{Mn}^{+7}$ diamagnetic
$\mathrm{MnO}_{4}^{-2} \quad \mathrm{Mn}^{+6}$ paramagnetic \square
unpaired electron is present so $\mathrm{d}-\mathrm{d}$ transition is possible.

85. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO}){ }_{4}\right]$ are
(1) square planar geometry and diamagnetic
(2) tetrahedral geometry and diamagnetic
(3) square planar geometry and paramagnetic
(4) tetrahedral geometry and paramagnetic

Ans. (2)
Sol. tetrahedral geometry and diamagnetic
$\mathrm{Ni} \longrightarrow 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

CO is SFL so unpaired electrons will get paired.

sp^{3} hybridisation
Tetrahedral, diamagnetic
86. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(1) tetranuclear
(2) mononuclear
(3) trinuclear
(4) dinuclear

Ans. (2)
Sol. $\mathrm{Fe}(\mathrm{CO})_{5}$
EAN $=$ Z-O.N. $+2(\mathrm{C} . \mathrm{N}$.
$=26-0+2(5)$
$=26+10$
$=36$
only one central metal atom/on is present and it follows EAN rule, so it is mononuclear
87. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the comect code :

Column I
a. Co^{3+}
b. Cr^{3+}
c. Fe^{3+}
d. Ni^{2+}
iv. $\sqrt{24}$ B.M.
v. $\sqrt{15}$ B.M.

	a	b	c	d
(1)	iv	v	ii	i
(2)	i	ii	iii	iv
(3)	iv	i	ii	iii
(4)	iii	v	i	ii

Ans. (1)

Sol. Magnetic moment $(\mu)=\sqrt{n(n+2)}$ B.M.
(a) $\mathrm{Co}^{3+} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{6}$

$$
\mathrm{n}=4
$$

$$
\mu=\sqrt{4(4+2)}=\sqrt{24} \text { B. } \mathrm{M}
$$

(b) $\mathrm{Cr}^{+3} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{3}$

$$
\mathrm{n}=3
$$

$\mu=\sqrt{3(3+2)}=\sqrt{5}$ B.M.
(c) $\mathrm{Fe}^{3+} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{5}$

$$
\mathrm{n}=5
$$

$\mu=\sqrt{5(5+2)}=\sqrt{65}$ В. M .
(d) $\mathrm{Ni}^{+2} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{8}$

$$
\mathrm{n}=2
$$

$$
\mu=\sqrt{2(2+2)}=\sqrt{8}
$$

B. M.
88. Which of the following is correct with respect to -I effect of the substituents ? ($\mathrm{R}=\mathrm{alkyl}$)
(1) $-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$
(2) $-\mathrm{NR}_{2}<-\mathrm{OR}<-$ F
(3) $-\mathrm{NH}_{2}>-\mathrm{OR}>-\mathrm{F}$
(4) $-\mathrm{NR}_{2}>-\mathrm{OR}>-\mathrm{F}$

Ans. (1/2)
Sol. (Based on EN)

\therefore	$-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$	- I effect
Also	$-\mathrm{NR}_{2}<-\mathrm{OR}<-\mathrm{F}$	-I effect

89. Which of the following carbocations is expected to be most stable ?
(1)

(2)

(3)

(4)

Ans. (3)
Sol. $-\mathrm{NO}_{2}$ group is meta-directing group

(Less stable due to more e - withdrawing effect of $-\mathrm{NO}_{2}$)

(More stable due to less e^{-}withdrawing effect of $-\mathrm{NO}_{2}$)
90. Which of the following molecules represents the order of hybridisation $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}$, sp from left to right atoms?
(1) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH} 2$
(4) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH} 3$

Ans. (2)
Sol. $\quad \mathrm{Cp}^{\text {sp }} \mathrm{C}_{2}=\mathrm{Cp}-\mathrm{Cl}^{\text {sp }} € \mathrm{sp}$

