Test Booklet Code परीक्षा पुस्तिका संकेत

SCO

No.: 1311774

This Booklet contains 40 pages. इस पुस्तिका में 40 पृष्ठ हैं।

SEAL

Do not open this Test Booklet until you are asked to do so. इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Read carefully the Instructions on the Back Cover of this Test Booklet. इस परीक्षा पुस्तिका के पिछले आवरण पर दिए निर्देशों को ध्यान से पढ़ें।

Important Instructions :	महत्वपूर्ण निर्देश :				
 The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point 	 उत्तर पत्र इस परीक्षा पुस्तिका के अन्दर रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्र निकाल कर पृष्ठ-1 एवं पृष्ठ-2 पर केवल नीले / काले बॉल पॉइंट पेन से विवरण भरें। 				
 pen only. The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720. 	 परीक्षा की अवधि 3 घंटे है एवं परीक्षा पुस्तिका में 180 प्रश्न हैं। प्रत्येक प्रश्न 4 अंक का है। प्रत्येक सही उत्तर के लिए परीक्षार्थी को 4 अंक दिए जाएंगे। प्रत्येक गलत उत्तर के लिए कुल योग में से एक अंक घटाया जाएगा। अधिकतम अंक 720 हैं। 				
 Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses. 	 इस पृष्ठ पर विवरण अकित करने एवं उत्तर पत्र पर निशान लगाने के लिए केवल नीले / काले बॉल पॉइंट पेन का प्रयोग करें। 				
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.	4. रफ कार्य इस परीक्षा पुस्तिका में निर्धारित स्थान पर ही करें।				
5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them	5. परीक्षा सम्पन्न होने पर, परीक्षार्थी कक्ष / हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ प्रश्न पुस्तिका को ले जा सकते हैं।				
6. The CODE for this Booklet is B Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet	6. इस पुस्तिका का संकेत है B। यह सुनिश्चित कर लें कि इस पुस्तिका का संकेत, उत्तर पत्र के पृष्ठ-2 पर छपे संकेत से मिलता है। अगर यह भिन्न हो तो परीक्षार्थी दूसरी परीक्षा पुस्तिका और उत्तर पत्र लेने के लिए निरीक्षक को तुरन्त अवगत कराएं।				
and the Answer Sheet. 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer	7. परीक्षार्थी सुनिश्चित करें कि इस उत्तर पत्र को मोड़ा न जाए एवं उस पर कोई अन्य निशान न लगाएं। परीक्षार्थी अपना अनुक्रमांक प्रश्न पुस्तिका / उत्तर पत्र में निर्धारित स्थान के अतिरिक्त अन्यत्र ना लिखें।				
Sheet.8. Use of white fluid for correction is NOT permissible on the Answer Sheet.	 उत्तर पत्र पर किसी प्रकार के संशोधन हेतु व्हाइट फ़्लूइड के प्रयोग की अनुमति नहीं है। 				
In case of any ambiguity in translation of any c	uestion, English version shall be treated as final.				

प्रश्नों के अनुवाद में किसी अस्पष्टता की स्थिति में, अंग्रेजी संस्करण को ही अंतिम माना जायेगा।

В	2	SCO
1.	Read the different components from (a) to (d) in the	1.) नीचे दी गयी सूची में (a) से (d) तक विभिन्न अवयवों को पढ़ें
	list given below and tell the correct order of the	और एक काष्ठीय द्विबीजपत्री तने में बाहर से भीतर की ओर
	outer side to inner side in a woody dicot stem :	उनकी व्यवस्था का सही क्रम बतायें :
·	(a) Secondary cortex	(a) द्वितीयक वल्कुट
	(b) Wood	(b) কাষ্ <u>ড</u>
	(c) Secondary phloem	(c) द्वितीयक पोषवाह Ø
	(d) Phellem	(d) काग
· ,	The correct order is :	सही क्रम है :
	(1) (c), (d), (b), (a)	(1) (c), (d), (b), (a) (2) (a) (b) (d) (c)
* .	(2) (a), (b), (d), (c)	(3) (d), (a), (c), (b)
*	(3) (d), (a), (c), (b)	(d), (c), (a), (b)
· . ·	(4) (d), (c), (a), (b)	 वर्णकीलवक (क्रोमैटोफोर) किस क्रिया में भाग लेते हैं?
· · ·	Chromatonhoros tako part in	, ∕्रt) प्रकाश संश्लेषण
۷.	(1) Photosunthosis	(2) वृद्धि
· ·	$\begin{array}{c} (1) & 1 \\ (2) & Crowth \end{array}$	(3) गति
•	(2) Growni (3) Movement	(4) श्वसन
1 - A	(4) Respiration	3. निम्नलिखित में से कौन-सी संधि किसी प्रकार की गति की
· · ·	(4) Respiration	अनुमति नहीं देती ?
3.	Which of the following joints would allow no	. (1) रेशेदार संधि
	movement?	(2) उपास्थिल संधि
. •	(1) Fibrous joint	(3) सायनोवियल संधि
	(2) Cartilaginous joint	(4) कंदुक खल्लिका संधि (बाल व साकिट जायंट)
· .	(3) Synovial joint	4. गेहें के दाने में भ्रण में एक बड़ा ढाल के आकार का बीजपत्र
	(4) Ball and Socket joint	होता है। वह क्या कहलाता है ?
4.	The wheat grain has an embryo with one large.	(1) अधिकोरक
	shield-shaped cotyledon known as :	(2) मूलांकर चोल
	(1) Epiblast	(3) स्कुटेलम
	(2) Coleorrhiza	(4) प्रांकुर चोल
	(3) Scutellum	 सहप्रभावित दर्शाने वाली जीन में क्या होता है ?
	(4) Coleoptile	(1) UG 27H and CHI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E ·	A como charrier a codominan en has .	(2) यग्मविकल्पी एक ही गणसत्र पर कस कर सहलग्नित
5.	(1) ano allele dominant on the other	होते हैं।
	 (1) One anere dominant on the other (2) alleles tightly linked on the same shromesome. 	(3) वे यग्मविकल्पी जो एक दसरे के लिए अप्रभावी होते
	 (2) alleles thet are recessive to each other (3) alleles that are recessive to each other 	**************************************
	(5) alleles that are recessive to each other	(4) विषम यग्मज में दोनों यग्मविकल्पी स्वतन्त्र रूप से
	(4) Doth alleles independently expressed in the heterozygote	अभिव्यक्त होते हैं।
		< निवित्तितित में में सौंभ मी मंग्रेशन मार्क्सेज्यनी सोणिता में
6.	Which of the following structures is not found in a	. जनगरपञ्चान च अगन चा चरणना प्राकृणन्द्रका का। राका म नहीं पारग जाती ?
	prokaryotic cell :	
	(1) INUCLEAR ENVELOPE	
	(2) KIDOSOME	(२) मध्यकाय (मीलोम्रोम)
	(3) Mesosome	(4) फ्लाऊचा कल्ला
	(4) Plasma membrane	עדי דיורי (ד) (ד)

sco	 	3	B
7.	The terr	m "linkage" was coined by :	7. सहलग्नता (लिंकेज) शब्द किसने प्रयोग किया था?
	(1) T	.H. Morgan	√ (1) टी.एच. मोर्गन
	(2) T	Boveri	(2) टी. बोवरी
	(3)	G. Mendel	(3) जी. मेण्डल
	(4) V	V. Sutton	(4) डब्ल्यू. सटन
8.	The imp and hel (1) [perfect fungi which are decomposers of litter p in mineral cycling belong to : Deuteromycetes	 अपूर्ण कवक जो करकट के अपघटक हैं और खनिजों के चक्रण में सहायता करते हैं, वे किससे सम्बन्धित हैं? क्यटेरोमाइमिटीज
	(2) t	Sasidiomycetes	(2) त्रैमिटीग्रोमटमिटीज
۰.	(3) I	hycomycetes	
	(4) /	Ascomycetes	(3) (3) (3) (3)
<u>.</u>	Match (the columns and identify the correct antion	(4) एस्कामाइ।सटाज
9.	wiaich i	Column I Column II	9. कॉलमों के बीच मिलान कीजिए और सही विकल्प चुनिए :
	· (a)	Thylakoids (i) Disc-shaped sacs in	कॉलम I कॉलम II
	(u)	Golgi apparatus	(a) थायलॉकॉइड (i) गॉल्जी उपकरण में डिस्कनुमा
	(b) . (b)	Cristae (ii) Condensed structure	ी कोष
		of DNA	(b) क्रिस्टी (ii) DNA की संघनित संरचना
	(C) (usternae (111) Hat membranous sacs	(c) सिस्टर्नी 💛 (iii) स्ट्रोमा में चपटे झिल्लीमय कोष
	(<u>d</u>) (Chromatin (iv) Infoldings in	(ii) क्रोमैटिन- प्राv) माइटोकॉन्ड्रिया में अंतर्वलन
-		mitochondria	(a) (b) (c) (d)
	. ((a) (b) (c) (d)	(1) (iv) (iii) (i) (ii)
	(1) ((iv) (iii) (i) (ii)	(2) (iii) (iv) (i) (ii)
	(2)	(iii) (iv) (i) (ii)	(3) (111) (1) (1V) (11) (4) (iii) (iv) (iv) (ii) (ii)
	(3)	(iii) (i) (iv) (ii)	
	(4)	(iii) (iv) (ii) (i)	10. गलत कथन को चुनिए :
10.	Select t	he wrong statement :	(1) विषाणुभ, डी.जे. इवानोवस्की द्वारा खोजे गये थे।
	(1)	The viroids were discovered by D.J. Ivanowski	(2) डब्ल्यू. एम. स्टैन्ले ने दर्शाया की विषाणु क्रिस्टलीकृत
	(2)	W.M. Stanley showed that viruses could be crystallized	हो सकते हैं। (3) "contagium vivum fluidum" पद एम डब्ल्य
	(3)	The term 'contagium vivum fluidum' was coined by M. W. Beijerinek	बिजेरिनेक ने दिया था।
	(4)	Mosaic disease in tobacco and AIDS in human being are caused by viruses	(4) तम्बाकू म किमार राग आर मनुष्य म ए.आइ.डा. एस. विषाणुओं के द्वारा होता है। 5 ⁻²⁷⁵
11.	During nitroge	g biological nitrogen fixation, inactivation of enase by oxygen poisoning is prevented by :	11. नाइट्रोजन स्थिरिकरण के दौरान आक्सीजन के विषैले प्रभाव से नाइट्रोजिनेज का निष्क्रियकरण किस द्वारा रोका जाता है?
	(1)	Leghaemoglobin	(1) लग्हामाग्लोबन
	(2)	Xanthophyll	(2) जैन्थोफिल
	(3)	Carotene	(3) कैरोटिन
	(4)	Cytochrome	(4) साइटोक्रोम

· · .		
В.	4	1 SCO
12.	The species confined to a particular region and not found elsewhere is termed as :	12.) एक विशिष्ट क्षेत्र में सीमित रहने वाली जाति को जो अन्यत्र नहीं पायी जाती उसे क्या कहा जाता है 2
	(1) Keystone	/1) कोस्टोन
	(2) Alien	(2) विदेशी
	(3) Endemic	(3) विशेष क्षेत्री
	(4) Rare	(3) (4) दुर्लभ
13.	Which one of the following hormones is not involved in sugar metabolism?	13. निम्नलिखित हॉर्मोनों में से कौन-सा एक हॉर्मोन शर्करा उपापचय
•	(1) Cortisone	म शामिल महा होता?
	(2) Aldosterone	(1) काटिसान (1) केट्रिटेन्ट्र
	(3) Insulin	
· ·	(4) Glucagon	(3) इसुलिन
11	Which of the following is not a function of the	(4) ¹ (4) (4)
14.	skeletal system ?	14. निम्नलिखित में से कौन-सा कंकाल-तंत्र का कार्य नहीं है?
	(1) Production of erythrocytes	(1) रक्ताणुओं का उत्पादन
	(2) Storage of minerals	(2) खनिजों का भंडारण
	(3) Production of body heat	∼(3) देह-ऊष्मा का उत्पादन
	(4) Locomotion	(4) संचलन
15	Which and of the following is not applicable to	15. निम्नलिखित में से कौन-सा RNA पर लागू नहीं होता?
15.	RNA ?	(1) संपूरक देख मुग्मन
	(1) Complementary base pairing	(2) 5' फॉस्फ़ोरिल और 3' हाइड्रोक्सिल सिरे
	(2) 5' phosphoryl and 3' hydroxyl ends	(3) विषमचक्रीय नाइट्रोजनी बेस
	(3) Heterocyclic nitrogenous bases	(4) चारगौफ़ नियम
:	(4) Chargaff 's rule	र 16 निपरलिगितन में में कौन मा उभन मननर है 2
16	1471 1	
16.	Which one is a wrong statement ?	(1) स्त्रायाना, श्रायाफाइटा, टारेडाफाइटा आर अनावृत्ता पादपा में पायी जाती हैं।
	(1) Archegonia are found in Bryophyta, Pteridophyta and Gymnosperms	(2) <i>म्यकर</i> में द्रिकशाभिक चल बीजाण होते हैं।
	(2) <i>Mucor</i> has biflagellate zoospores	(3) अगुणित भ्रूणपोष अनावत बीजी पादपों का प्रारूपिक
•	(3) Haploid endosperm is typical feature of gymnosperms	लक्षण हैं। (1) भरे शैवालों में प्राहिति क्योंग व्यस प्रास्तेने शीन होने
	(4) Brown algae have chlorophyll a and c, and fucoxanthin	हैं।
17	A childlore couple can be conjeted to have a child	17. एक निःसंतान दंपति को GIFT नामक तकनीक के ज़रिए बच्चा
17.	through a technique called GIFT. The full form of this technique is :	प्राप्त करने में मदद की जा सकती है। इस तकनीक का पूरा नाम है :
	(1) Gamete inseminated fallopian transfer	(1) वीर्यसेचित फैलोपी नलिका में युग्मक का स्थानांतरण
	(2) Gamete intra fallopian transfer	(2) अंत:फैलोपी नलिका में युग्मक का स्थानांतरण
•	(3) Gamete internal fertilization and transfer	(3) युग्मक का आंतरिक निषेचन और स्थानांतरण
	(4) Germ cell internal fallopian transfer	(4) आंतरिक फैलोपी नलिका में जनन कोशिका का स्थानांतरण

S 1

	sco			5		В
	18.	The v	vings of a bird and the wings of an insect are t	.18.	पक्षी	के पंख और कोट के पंख :
		(1)	homologous structures and represent divergent evolution		(1)	समजातीय संरचनाएँ हैं और अपसारी विकास को दर्शाती हैं।
		(2)	analogous structures and represent convergent evolution		JX	अनुरूप संरचनाएँ हैं और संसृत विकास को दर्शाती हैं।
		(3)	phylogenetic structures and represent divergent evolution		(3)	वंशावली सरचनाएँ हैं और अपसारी विकास को दर्शाती हैं।
	• •	(4)	homologous structures and represent convergent evolution		(4)	समजातीय संरचनाएँ हैं और संसृत विकास को दर्शाती हैं।
	•	· ·				
•	19.	Gold when biosy	en rice is a genetically modified crop plant re the incorporated gene is meant for mthesis of :	19.	सुनह पादप लिग	ऐ (गोल्डन) चावल एक आनुवंशिक रूपांतरित फसल न है। इसमें निवेशित जीन किसके जैविक संश्लेषण के है2
		(1)	Vitamin B			
		(2)	Vitamin C		(1)	
- 16. APRIL 1		(3)	Omega 3		(2)	विद्यामन C
		(4)	Vitamin A	-	(3)	अमिगा3
	•				(4)	विटामिन A
	20.	Outb husb	reeding is an important strategy of animal andry because it :	20.	पशुप	ालन में बहि:प्रजनन एक महत्वपूर्ण क्रियाविधि है क्योंकि
	•	(1)	helps in accumulation of superior genes.		યહ	
		(2)	is useful in producing purelines of animals.		(1)	बहतर जानी के एकत्रीकरण में मदद करता है।
		(3)	is useful in overcoming inbreeding		(2)	जतुओं के शुद्ध वंशक्रमों को उत्पन करने में उपयोगी है।
and the second second	•	•	depression.		(3)	अंत:प्रजनन के अवसाद को दूर करने में उपयोगी है।
والمراجعة والمتركمة والمراجعة والمراجعة		(4)	exposes harmful recessive genes that are eliminated by selection.		(4)	हानिकारक अप्रभावी जीनों को अनावृत कर देता है जिन्हें चयन द्वारा निष्कासित किया जा सकता है।
本語が何度です。 したいしつごうき したいしょうか	21.	Whic synth mast	h one of the following hormones though resised elsewhere, is stored and released by the er gland ?	21.	निम्न स्थान	लिखित हॉर्मोनों में से कौन-सा हॉर्मोन, हालाँकि कहीं अन्य 1 पर संश्लेषित होता है, लेकिन उसका भंडारण और निर्मोचन
		(1)	Antidiuretic hormone		प्रमुख	व ग्राथ द्वारा होता हे ?
	•	(2)	Luteinizing hormone		(A)	प्रतिमूत्रल हॉमोन
		(3)	Prolactin		(2)	ल्यूटीनाईजिंग हॉर्मोन
		(4)	Melanocyte stimulating hormone		(3)	प्रोलैक्टिन
		• /	,		(4)	मेलानोसाइट उद्दीपक हॉर्मोन
	22.	An a living intera	ssociation of individuals of different species g in the same habitat and having functional actions is :	22.	एक पारस	ही पर्यावास में रह रही विभिन्न स्पीशीजों की व्यष्टियों का यरिक संबंध और क्रियात्मक क्रिया करना है :
•••		(1)	Ecological niche		in	पारिस्थितिक निकेत
	•••	(2)	Biotic community		(2)	जीवीय समुदाय
		(3)	Ecosystem		(3)	पारितंत्र
۰.		(4)	Population		(4)	समच्टि
				1	(~)	

Æ,

D हीं

य

sco^s

21

3

निम्नलिखित में से किसमें दोनो युग्मों में सही संयोजन है?

(1)	गैसीय पोषण चक्र	कार्बन और नाइट्रोजन
	अवसादी पोषण चक्र	सल्फर और फास्फोरस
(2)	गैसीय पोषण चक्र	कार्बन और सल्फर
(2)	अवसादी पोषण चक्र	नाइट्रोजन और फास्फोरस
(3)	गैसीय पोषण चक्र	नाइट्रोजन और सल्फर
	अवसादी पोषण चक्र	कार्बन और फास्फोरस
(4)	गैसीय पोषण चक्र	सल्फर और फास्फोरस
	अवसादी पोषण चक्र	कार्बन और नाइट्रोजन

24.) सबसे बड़े से प्रारंभ करके सबसे छोटे के क्रम में जीवों के आनुवंशिक पदार्थ के सही क्रम को पहचानिए।

(1) गुणसूत्र, जीन, जीनोम, न्यूक्लियोटाइड

(2) जीनोम, गुणसूत्र, न्यूक्लियोटाइड, जीन

(B) जीनोम, गुणसूत्र, जीन, न्यूक्लियोटाइड

(4) गुणसूत्र, जीनोम, न्यूक्लियोटाइड, जीन

25. जबड़ाहीन मछली, जो अपने अंडे अलवण जल में देती है और जिसके ऐमोसीट लाखे कायांतरण के बाद वापस समुद्र में चले जाते हैं. है -

- (1) एप्टाट्रेटस
- (2) मिक्साइन
- (3) नियोमिक्साइन
- (4) पेट्रोमाइजॉन

26. औद्योगिक अतिकृष्णता एक उदाहरण है :

- (1) नियोडार्विनिज्म का
- <u>(</u>2) प्राकृतिक वरण का
- (3) उत्परिवर्तन का
- (4) नियोलैमार्किज्म का
- 27. किसमें कोशिका भित्ति का अभाव होता है ?
 - (1) एस्परजिलस
 - (2) फ्युनेरिया
 - (3) माइकोप्लाज्मा
 - (4) नॉस्टाक
- 28. आर्थ्रोपोड़ों का काइटिनी बाह्य कंकाल किसके बहुलकीकरण से बनता है?
 - 🚛 🕼 🕺 कैराटिन सल्फेट और कॉन्ड्रोइटिन सल्फेट के
 - (2) D ग्लूकोसेमिन के
 - (3) N एसीटिल ग्लूकोसेमिन के
 - (4) लिपोग्लाइकेनों के

In which of the following both pairs have **correct** combination?

	· · · · · · · · · · · · · · · · · · ·	the second s
(1)	Gaseous nutrient cycle	Carbon and Nitrogen
(1)	Sedimentary nutrient cycle	Sulphur and Phosphorus
(2)	Gaseous nutrient cycle	Carbon and sulphur
(2)	Sedimentary nutrient cycle	Nitrogen and Phosphorus
(2)	Gaseous nutrient cycle	Nitrogen and sulphur
(5)	Sedimentary nutrient cycle	Carbon and Phosphorus
(4)	Gaseous nutrient cycle	Sulphur and Phosphorus
(4)	Sedimentary nutrient cycle	Carbon and Nitrogen

Identify the correct order of organisation of genetic

Chromosome, gene, genome, nucleotide

Genome, chromosome, nucleotide, gene

Genome, chromosome, gene, nucleotide

Chromosome, genome, nucleotide, gene

A jawless fish, which lays eggs in fresh water and whose ammocoetes larvae after metamorphosis

material from largest to smallest :

return to the ocean is :

Entatretus

Neomyxine

Petroinyzon

Neo Darwinism

Industrial melanism is an example of :

Myxine

В 23.

24.

25.

26.

27.

28.

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(1)

(2)Natural selection (3) Mutation (4) Neo Lamarckism Cell wall is absent in : (1)Aspergillus (2)Funaria (3)Mycoplasma Nostoc (4)The chitinous exoskeleton of arthropods is formed by the polymerisation of : (1)keratin sulphate and chondroitin sulphate (2)D - glucosamine (3) N - acetyl glucosamine (4)lipoglycans

23.

 29. Filliorm apparatus is characteristic feature of: Generative cell Generative cell Nucellar embryo Aleurone cell Synergids 30. In angiosperms, microsporogenesis and megasprogenesis: occur in anther form gametes without further divisions involve meiosis occur in orule 31. Metagenesis refers to: Presence of different morphic forms Aleuration of generation between asscual and sexual phases of an organist Presence of a segmented body and parthenogenetic mode of reproduction Servetion of the following immunoglobulins does constitute the largest percentage in human milk? IgD IgA IgA Iga di statistic hearpest of the spinal cord would result in loss of: sensory impulses commissural impulses commissural impulses commissural impulses meastiction corymes Restriction corymes Restriction corymes Probes Selectable markers immuno di cord would result in loss of: meastiction corymes the cutting of DNA at specific locations became possible with the discovery of: Restriction corymes Selectable markers Selectable markers Selectable markers Selectable markers Selectable markers Selectable markers 	sco			7		E E
 (1) Generative cell (2) Nucellar embryo (3) Aleurone cell (4) Synergids 30. In angiosperms, microsporogenesis and megasporogenesis; (1) occur in anther (2) form gametes without further divisions (3) Involve meiosis (4) occur in ovule 31. Metagenesis refers to: (1) Presence of different morphic forms (2) Aleurantion of generation between asexual and sexual phases of an organism (3) Courrence of adratic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction 32. Which of the following immunoglobulins does constitute the largest picreentage in human mlk? (1) IgD (2) IgM (3) IgA (4) IgC 33. Destruction of the anterior horn cells of the spinal cord would result in loss of: (1) sensory impulses (2) voluntary motor impulses (3) Integrating impulses (4) integrating impulses (5) robs (6) sciencible markers (7) Probs (8) Selectable markers (9) Cobs (1) Restriction enzymes (2) Probs (3) Restriction enzymes (4) Stewart & target in farther (5) robas (6) robas (7) robas (7) robas (8) robas 	29.	Filifo	rm apparatus is characteristic feature of :	29.	तन्तुरू	⁵ प उपकरण किसका लाक्षणिक गुण है ?
 (2) Nucellar embryo (3) Aleurone cell (4) Synergids (5) In angiosperms, microsporogenesis and megasporogenesis: (1) qccur in anther (2) 信仰 四月 angio and metan and second and sec		(1)	Generative cell		(1)	जनन कोशिका
 (3) Aleurone cell (4) Synergids (5) Ucration after afte		(2)	Nucellar embryo		(2)	बीजाण्डकायिक भ्रूण
 (4) Synergids 30. In angiosperms, microsporogenesis and megasporogenesis: (1) occur in anther (2) form gametes without further divisions (3) Involve meiosis (4) occur in oxule 31. Metagenesis refers to: (1) Presence of a drastic change in form during post-embryonic development (3) Decurrence of a drastic change in form during post-embryonic development (4) IgD (2) IgM (3) IgA (4) IgG 32. Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) IgD (2) IgM (3) IgA (4) IgG 33. Destruction of the anterior horn cells of the spinal cord would result in loss of : (1) sensory impulses (2) voluntary motor impulses (3) commissural inpulses (4) integrating impulses (5) robs (6) Selectable markers (7) Selectable markers (8) Selectable markers (9) Selectable markers (1) Restriction enzymes (2) Probes (3) Reference of a farstic locations became possible with the discovery of : (2) Reference of a farstic locations became possible with the discovery of : 	-	(3)	Aleurone cell		(3)	एल्युरोन कोशिका
 30. In angiosperms, microsporogenesis and megasporogenesis: occur in anther occur in anther form gametes without further divisions involve meiosis occur in ovule 31. Metagenesis refers to: Presence of different morphic forms Alternation of generation between asxual and sexual phases of an organism Occurrence of a drastic change in form during post-embryonic development Presence of a segmented body and parthenogenetic mode of reproduction U IgD IgA IgC 33. Destruction of the anterior horn cells of the spinal cord would result in loss of : sensory impulses commissural impulses commissural impulses commissural impulses the cutting of DNA at specific locations became possible with the discovery of: Restriction enzymes Restriction enzymes Probes Selectable markers Exercise and action enzymes recuting of DNA at specific locations became possible with the discovery of: Restriction enzymes 	•	(4)	Synergids		JAY .	सहाय कोशिकाएँ
Integasporogeness:(1)occur in anther(2)form gametes without further divisions(3)Involve meiosis(4)occur in ovule31.Metagenesis refers to:(1)Presence of different morphic forms(2)Alternation of generation between asexual and sexual phases of an organism(3)Occurrence of a drastic change in form during post-embryonic development(4)Presence of a segmented body and parthenogenetic mode of reproduction32.Which of the following immunoglobulins does constitute the largest percentage in human milk?(1)IgD(2)IgM(3)IgA(4)IgC33.Destruction of the anterior horn cells of the spinal cord would result in loss of :(1)sensory impulses(2)voluntary motor impulses(3)utruing of DNA at specific locations became possible with the discovery of :(1)Restriction enzymes(2)Probes(3)selectable markers(4)Iserem(5)Selectable markers(6)Selectable markers(7)Viegawn Vang(8)utradia(9)Selectable markers(11)iterace(2)yiarq(3)utradia(4)iterace(5)Selectable markers(6)Selectable markers(7)Viegawn Vang(8)utradia(9)utradia(9)utradia <td>30.</td> <td>In a</td> <td>angiosperms, microsporogenesis and</td> <td>30.</td> <td>आवृत</td> <td>त बीजी पादपों में लघुबीजाणुजनन और गुरुबीजाणु जनन</td>	30.	In a	angiosperms, microsporogenesis and	30.	आवृत	त बीजी पादपों में लघुबीजाणुजनन और गुरुबीजाणु जनन
 (1) occur in anther (2) form gametes without further divisions (3) Involve meiosis (4) occur in ovule (4) alonge # Ref #		mega	isporogenesis :		(1)	परागकोष में होता हैं।
 (2) form ganetes without further divisions (3) Involve meiosis (4) occur in ovule (4) adamus 其 設備 表 表 (4) adamus 其 設備 表 表 (5) Alternation of generation between asexual and sexual phases of an organism (3) Occurrence of adrastic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction (1) IgD (2) IgM (3) IgA (4) IgC (3) Destruction of the anterior horn cells of the spinal cord would result in loss of : (1) sensory impulses (2) voluntary motor impulses (3) cominisural impulses (4) The cutting of DNA at specific locations became possible with the discovery of : (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Restriction enzymes (5) Selectable markers (6) Selectable markers (7) Sensory impulses (8) Selectable markers (9) Selectable markers (10) Restriction enzymes (2) Probes (3) Keing an angle and sensory impulses (4) Restriction enzymes (5) Red angle and sensory impulses (6) Keing and angle and sensory impulses (7) Restriction enzymes (8) Selectable markers (9) Keing and angle and sensory impulses (9) Keing and angle angle and angle a		(1)	occur in anther		(2)	बिना अग्र विभाजन के युग्मक बनाते हैं।
 (3) Involve metosis (4) occur in ovule (4) distruction or outle (4) distruction of generation between asexual and sexual phases of an organism (3) Alternation of generation between asexual and sexual phases of an organism (3) Cocurrence of a drastic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction (5) Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) Ig D (2) Ig M (3) Ig A (4) Ig G (4) Ig C (5) Continuent of the anterior horn cells of the spinal cord would result in loss of: (1) sensory impulses (2) voluntary motor impulses (3) Continuing impulses (4) integrating impulses (5) commissural impulses (6) integrating impulses (7) Restriction enzymes (8) Selectable markers (9) Content of the anterior of the anterior of the discovery of: (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Urange 	•	(2)	form gametes without further divisions		(3)	अर्द्ध सत्र विभाजन द्वारा होते हैं।
 (4) occur in ovule 31. Metagenesis refers to: (1) Presence of different morphic forms (2) Alternation of generation between asexual and sexual phases of an organism (3) Occurrence of a drastic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction 32. Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) IgD (2) IgM (3) IgA (4) IgG 33. Destruction of the anterior horn cells of the spinal cord would result in loss of: (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (5) continue the discovery of: (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Lincore 33. Metagenesis refers to: (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Lincore 	÷ ,	(3)	Involve meiosis		(4)	बीजाण्ड में होता है।
 31. 姓名蘭雪和花根 (根華南花椒) 藤桃森 桂蓉南 花椒) 33. 姓名林 (根華南花椒) 藤桃森 桂蓉南 花椒) 34. 计名前有 和高利和 (根本和 花椒) 35. Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) 夏D (2) IgM (3) IgA (4) IgC 33. Destruction of the anterior horn cells of the spinal cord would result in loss of: (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (5) continusural impulses (6) integrating impulses (7) Restriction enzymes (8) Selectable markers (9) Linance 	· ·	(4)	occur in ovule			
 (1) Presence of different morphic forms (2) Alternation of generation between asexual and sexual phases of an organism (3) Occurrence of a drastic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction (3) Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) 增值程 建程率增计 详细 imm. (2) URM (3) Ig A (4) Ig G (3) Destruction of the anterior horn cells of the spinal cord would result in loss of: (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (3) Commissural impulses (4) Integrating impulses (5) commissural impulses (6) metaration form enzymes (7) Restriction enzymes (8) Selectable markers (9) Linance 	31.	Meta	genesis refers to :	31.	मेटाजे	नेनेसिस (समेकांतरण) किसका संकेत देता है?
 (2) Alternation of generation between asexual and sexual phases of an organism (3) Occurrence of a drastic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction (4) Presence of a segmented body and parthenogenetic mode of reproduction (3) Ugen structure the largest percentage in human milk? (1) Ig D (2) Ig M (3) Ig A (4) Ig G (4) Ig G (5) Commissural impulses (6) integrating impulses (7) Restriction enzymes (8) Selectable markers (9) Selectable markers (10) Restriction enzymes (2) Probes (3) Selectable markers (4) Linexon (5) Selectable markers (6) Linexon 		(1)	Presence of different morphic forms		(1)	विविध स्वरूपों में पाया जाना
 (3) Occurrence of a drastic change in form during post-embryonic development (4) Presence of a segmented body and parthenogenetic mode of reproduction (3) 煤収収電 1 収福転 3 には、 3 にののののののののののののののののののののののののののののののののののの		(2)	Alternation of generation between asexual and sexual phases of an organism		-(2)	एक जीव की अलैंगिक और लैंगिक प्रावस्थाओं के बी पीढ़ी - एकांतरण
 (4) Presence of a segmented body and parthenogenetic mode of reproduction 32. Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) IgD (2) IgM (3) IgA (4) URA HERE'S TRACKAIPENERGIA HI STATE STAT		(3)	Occurrence of a drastic change in form during post-embryonic development		(3)	भ्रूणपश्ची परिवर्धन के दौरान स्वरूप में गंभीर परिवर्त का पाया जाना
 32. Which of the following immunoglobulins does constitute the largest percentage in human milk? (1) Ig D (2) Ig M (3) Ig A (4) Ig G 33. Destruction of the anterior horn cells of the spinal cord would result in loss of : (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (3) commissural impulses (4) integrating impulses (5) Selectable markers (6) Linapor 32. Fit-inferfield H it the the following immunoglobulins does constitute the largest percentage in human milk? (1) Ig D (2) Ig M (3) Ig A (4) Ig G (4) Ig G (5) Ig A (6) Ig A (7) Key and the problem of the discovery of: (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Linapor 	•	(4)	Presence of a segmented body and parthenogenetic mode of reproduction		(4)	एक सखंड शरीर और जनन को अनिषेकजन विधि व पाया जाना
constitute the largest percentage in human milk ?(1)Ig D(2)Ig M(3)Ig A(4)Ig G33.Destruction of the anterior horn cells of the spinal cord would result in loss of :(1)sensory impulses(2)voluntary motor impulses(3)commissural impulses(4)integrating impulses(3)commissural impulses(4)integrating impulses(1)Restriction enzymes(2)Probes(3)Selectable markers(4)Licropo	32.	Whie	ch of the following immunoglobulins does	32.	निम्न	लिखित में से कौन-सा घटक प्रतिरक्षाग्लोब्युलिन मान
 (1) IgD (2) IgM (3) IgA (4) IgG (1) IgD (2) IgM (3) IgA (4) IgG (4) IgG (5) IgA (6) IgG (7) IgC (8) IgA (9) IgA (1) IgD (2) IgM (3) IgA (4) IgG (5) IgA (6) IgG (7) IgD (9) IgA (9) IgA (1) IgD (2) IgM (3) IgA (4) IgG (5) IgA (4) IgG (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (5) Edition enzymes (1) Restriction enzymes (2) Probes (3) Selectable markers (4) I impore 		consi	titute the largest percentage in human milk ?)	दुग्ध	में सबसे अधिक प्रतिशतता में पाया जाता है ?
 (2) IgM (3) IgA (4) IgG (2) Ig M (3) Ig A (4) IgG (4) IgG (5) Ig A (4) IgG (6) Ig A (7) Ig A (9) Ig A (1) Ig G (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (4) integrating impulses (5) CPU Restriction enzymes (1) Restriction enzymes (2) Ig M (3) Ig A (4) Ig G (5) Ig A (4) Ig G (6) Ig C (7) Ig A (9) Ig A (1) Ig C (1) Restriction enzymes (2) Views (3) Selectable markers (4) Lincore (2) Ig M (3) Ig A (4) Ig G (4) Ig G (5) Ig A (4) Ig G (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Lincore 		(1)		} .	(1)	IgD
 (3) Ig A (4) Ig G 33. Destruction of the anterior horn cells of the spinal cord would result in loss of : (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses 34. The cutting of DNA at specific locations became possible with the discovery of : (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Ligacor 		(2)			(2)	Ig M
 (4) IgG (4) IgG (5) IgG (4) IgG (5) IgG (4) IgG (5) IgG (6) IgG (6) IgG (7) IgG (7) IgG (8) IgG (9) IgG (1) IgG (1) Sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) Integrating impulses (5) IgG (6) IgG (7) IgG (8) IgG (9) IgG (1) Sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) Integrating impulses (3) Kiurdly Igaafa (4) KHIANI (gaafa (4) KHIANI (gaafa (4) KHIANI (gaafa (5) Igaafa (6) Igaafa (7) IgG (1) Kaata pecific locations became possible with the discovery of: (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Lincore (5) Igaafa (6) Igaafa (7) Igaafa (8) Igaafa (9) Igaafa (1) Igaafa (1) Igaafa (2) Igaafa (3) Kühata period (4) Igaafa (5) Igaafa (6) Igaafa (7) Igaafa (8) Igaafa (9) Igaafa (1) Igaafa (2) Igaafa (3) Igaafa<		(3)	Ig A		(8) (1)	lg A
 33. Destruction of the anterior horn cells of the spinal cord would result in loss of : sensory impulses voluntary motor impulses commissural impulses commissural impulses integrating impulses 34. The cutting of DNA at specific locations became possible with the discovery of : Restriction enzymes Probes Selectable markers Ligrocor 33. The value of the anterior horn cells of the spinal cord would result in loss of : Restriction enzymes Selectable markers Ligrocor 		(4)	IgG		(4)	18.9
 (1) sensory impulses (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (5) Commissural impulses (6) integrating impulses (7) 花長空報内 (1) 花長空報内 (1) 花長空報内 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	33.	Dest cord	ruction of the anterior horn cells of the spinal would result in loss of :	33	मेरुर परिण	न्जु की अग्र होर्न को कोशिकाएँ यदि नष्ट हो जाएँ तो इस 11म स्वरूप किसका लोप होगा ?
 (2) voluntary motor impulses (3) commissural impulses (4) integrating impulses (5) 正式 (1) Restriction enzymes (2) 建電砂布 보衣柄 互信有信 (3) 花組21 互信有信 (4) 根田南教制(蒙記以石可有 (4) 根田南教制(蒙記以石可有 (4) 根田南教制(蒙記以石可有 (4) 根田南教制(蒙記以石可有 (4) 根田南教制(蒙記以石可有 (5) 正式 (1) 原本 (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Ligacor 		(1)	sensory impulses		(1)	संवेदी प्रतिवर्त
 (3) commissural impulses (3) tiधायी प्रतिवर्त (4) integrating impulses (3) tiधायी प्रतिवर्त (4) समावेशी (इंटीग्रेटिंग) प्रतिवर्त 34. डी.एन.ए. का विशिष्ट स्थानों पर काट देना किसके आविष् से संभव हुवा ? (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Ligacor 		(2)	voluntary motor impulses		(2)	ऐच्छिक प्रेरक प्रतिवर्त
 (4) integrating impulses (4) 根田南教制(蒙記規范) 又很有充 34. The cutting of DNA at specific locations became possible with the discovery of : (1) Restriction enzymes (2) Probes (3) Selectable markers (4) 根田南教制(蒙記規范) 又很有充 (4) 根田南教制(蒙記規范) 又很有充 		(3)	commissural impulses		(3)	संधायी प्रतिवर्त
 34. The cutting of DNA at specific locations became possible with the discovery of : (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Ligasos 34. डी.एन.ए. का विशिष्ट स्थानों पर काट देना किसके आविष्य से संभव हुवा ? (1) रेस्ट्रिक्शन ऐंजाइम (2) प्रोबस् (3) Selectable markers (4) Ligasos 		(4)	integrating impulses	1.	(4)	समावेशी (इंटीग्रेटिंग) प्रतिवर्त
 (1) Restriction enzymes (2) Probes (3) Selectable markers (4) Ligasos 	34.	The poss	cutting of DNA at specific locations became ible with the discovery of :	34.	डी.ए से सं	न.ए. का विशिष्ट स्थानों पर काट देना किसके आविष्क भव हवा ?
(2)Probes(3)Selectable markers(4)Ligasoc	•	(1)	Restriction enzymes		ny	े रेस्टिक्शन ऐंजाइम
(3) Selectable markers (3) Ligasos	· ·	(2)	Probes		(2)	्र · · · · · · · · · · · · · · · · · · ·
(3) Ligason	•	(3)	Selectable markers		(2)	या १९
(4) Ligases (4) (4) (4)		(4)	Ligases		. (3)	तरायटेवरा गायरस् ज्यासीच

	· .		
	В	8	SC
· · ·	35.	In the following human pedigree, the filled symbols	35) निम्नलिखित मानव वंशावली में, भरे हुए संकेत प्रभावित व्यक्ति
	n an	represent the affected individuals. Identify the type	का निरूपण करते हैं। दी गयी वंशावली के प्रकार व
		or given pedigree.	पहचानिए :
	· ·		
•	•		
•			
. ,			
	. ••	(1) Autosomal dominant	(IV) 📓 🚺 🔿
		(2) X-linked recessive	(1) अलिंगसूत्री प्रभावी
		(3) Autosomal recessive	(2) X-सहलग्न अप्रभावी
		(4) X-linked dominant	🗸 (3) अलिंगसूत्री अप्रभावी
	36	A colour blind man marries a woman with normal	(4) X-सहलग्न प्रभावी
		sight who has no history of colour blindness in her	365 एक वर्णांध व्यक्ति सामान्य दृष्टि वाली एक ऐसी महिला
		family. What is the probability of their grandson	विवाह करता है जिसके परिवार का कोई भी सदस्य वर्णांध न
	•	being colour blind ?	है। इस दंपति के पोतों के वर्णांध होने की क्या संभावना है
			(1) 0.5
• .	•	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	(2) 1
		(1) 0.25 Y (4) + +++++++++++++++++++++++++++++++++	्र्(ठ) शून्य
	+ 1.	(+) 0.20 	(4) 0.25
	37.	Flowers are unisexual in :	37.) किसमें पुष्प एकलिंगी होते हैं ?
·	· ·	$ \begin{array}{c} (1) & Pea \\ \hline \\ \hline \\ \end{pmatrix} \qquad \qquad$	(1) मटर
•		(2) Cucumber $\neg \lor$	(2) खीरा
		(3) Childa rose	(3) चायना रोज
			(4) प्याज
:	38.	Roots play insignificant role in absorption of water	381 किसमें जडें जल शोषण में नगण्य कार्य करती हैं?
		In:	(1) सर्यमर्खी
		(1) Sunnower (2) Pictia	(*) 、 (*) 「恒振れ辺」
		(3) Pea	
÷.,	•	(4) Wheat	(d) $\vec{h}\vec{E}$
	20		
	39.	Balbiani rings are sites of :	39.) बल्बियानी वलय स्थल है :
		 (1) Lipia synthesis (2) Nucleotido synthesis 	(1) लिपिड संश्लेषण के
		(2) Polysaccharide synthesis	(2) न्यूक्लिओटाइड सश्लेषण के
		(4) RNA and protein synthesis	(3) पोलीसैकैराइड संश्लेषण के
			(4) RNA और प्रोटीन संश्लेषण के
	40.	Which of the following pairs is not correctly matched?	40. निम्नलिखित में से कौन सा युग्म सही सुमेलित नहीं है?
		Mode of reproduction Example	র র নির্দেশ দেশের বিদেশে।
		(1) Offset Water hyacinth	(1) मूस्तारा जल हायासथ
· · · ·	*	(2) Khizome Banana	(2) प्रकन्द केला (2) रिकन्द
		(3) Binary fission Sargassum	(अ) ाद्रखडन सारगासम
		(4) Contaita Penicilitum	((4) काानाडया पीनांसलियम
· · · ·	. • .		

			· · ·			· · · · · · · · · · · · · · · · · · ·
					•	
CO				• •		
CO s	sco		ç))	• •	В
क्तयी 4	41.	Ectop	vic pregnancies are referred to as :	41,	अपस्थ	थानिक सगर्भताएँ जानी जाती हैं :
9h	•	(1)	Pregnancies with genetic abnormality.		(1)	सगर्भताएँ जिनमें आनुवंशिक विषमताएँ हो।
		(2)	Implantation of embryo at site other than uterus.		(2)	गर्भाशय के अतिरिक्त भ्रूण का किसी अन्य स्थान पर अंतर्रोपण।
\sim		(3)	Implantation of defective embryo in the uterus		(3)	दोषयक्त भ्रण का गर्भाशय में अंतर्रोपण।
וע	•	(4)	Pregnancies terminated due to hormonal imbalance.	- -	(4)	्र सगर्भताएँ जो हॉर्मोन के असन्तुलन होने से अंत हो जाती हैं।
	42.	Choc	se the wrong statement :			
- Tritery and	· · ·	(1)	<i>Penicillium</i> is multicellular and produces antibiotics	42.	1010 (1)	कथन का चुनिए : <i>पैनिसीलियम</i> बहुकोशिकीय है और प्रतिजैविक उत्पादित
	· · ·	(2)	<i>Neurospora</i> is used in the study of biochemical genetics		(2)	करता है। <i>न्यूरोस्पोरा</i> को जैवरसायन अनुवांशिकी के अध्ययन में
	• .	(3)	Morels and truffles are poisonous mushrooms		(3)	उपयोग किया जाता है। मॉरेल और ट्रफेल विषैले छत्रक हैं।
से		(4)	Yeast is unicellular and useful in fermentation		(4)	यीस्ट एककोशिकीय है और किण्वन में उपयोगी है।
हीं	43	The f	unction of the gan junction is to	43.	ंगेप -	जंकशन का कार्य है :
	10.	(1)	performing cementing to keep neighbouring cells together.		(1) (2)	पडोसी कोशिकाओं को परस्पर जोड़े रखने के लिए। पड़ोसी कोशिकाओं के बीच संप्रेषण में मदद करने के
		(2)	facilitate communication between adjoining cells by connecting the cytoplasm for rapid transfer of ions, small molecules and some large molecules.	 - 		लिए, कोशिकाद्रव्य को जोड़े रखने के लिए ताकि आयन, छोटे अणु और कुछ बड़े अणु तीव्र गति से स्थानांतरित हो सकें।
		(3)	separate two cells from each other.		(3)	दो कोशिकाओं को एक दूसरे से पृथक रखने के लिए।
	• •	(4)	stop substance from leaking across a tissue.		(4)	किसी पदार्थ को ऊतक के पार निकलने से रोकने के लिए।
	4 4.	Axile	e placentation is present in :	44.	स्तभी	य बीजाण्ड न्यास किसमें होता है?
		(1)	Dianthus		(1)	डाइएन्थस
		(2)	Lemon		(2)	नींब
		(3)	Pea		(3)	मटर
		(4)	Argemone		(4)	आर्जीमोन
	45.	Whic	h of the following are not membrane - bound ?	45.	निम्न	लिखित में से कौन झिल्ली से नहीं घिरे रहते ?
		(1)	Vacuoles		(1)	रसधानियाँ
ĺ		(2)	Ribosomes		(2)	राइबोसोम
		(3)	Lysosomes		(3)	लाइसोसोम
	•	(4)	Mesosomes		(4)	मध्यकाय (मीज़ोसोम)
a 12 12 - The Manual Street of the Control of the C	46.	In hi did r	s classic experiments on pea plants, Mendel	46.	मटर उपयो	के पौधों पर अपने आदर्श प्रयोग में मेंडल ने किसका ाग न हीं किया?
		(1)	Seed colour		(1)	बीज का रंग
•		(1)	Pod length			फली की लम्बाई
	•	(4) (2)	Cood shape		(3)	बीज का आकार
• • •	-	(3)	Flower position		(4)	पुष्प को स्थिति

		•					
. ·]	В			10	*	SCO	5
4	47.	Durii	ng ecological succession :	47.	पारिरि	श्वतिकीय अनुक्रमण के दौरान :	52
•		(1)	the gradual and predictable change in specie composition occurs in a given area	S	(1)	किसी स्पीशीज़ की संघटना में क्रमिक और पहले से बताये जा सकने वाले परिवर्तन किसी एक क्षेत्र में होते	
		(2)	the establishment of a new biotic communit is very fast in its primary phase.	y .		हैं।	
	· .	(3)	the numbers and types of animals remai constant.	n	(2)	इसका प्राथामक प्रावस्था में नया जावाय समुदाय बहुत तीव्र गति से स्थापित होता है।	
		(4)	the changes lead to a community that is i	n	(3)	जंतुओं की संख्या और किस्में स्थिर रहती हैं।	5
•			near equilibrium with the environment an	d	(4)	उस समुदाय में होने वाले परिवर्तनों के कारण जो पर्यावरण	i
			is called ploneer community	•		के साम्य के समीप होता है, पुरोगामी समुदाय कहलाती	i
	48.	The	body cells in cockroach discharge the	r	·	है।	
		nitro the fo	genous waste in the haemolymph mainly i rm of :	n 48.	तिलच टीमोर्ग	ग्हे की शरीर-कोशिकाएँ अपने नाइट्रोजनी अपशिष्ट को लगफ में मधान कम में त्या कम में त्यान हेने हैं	
		(1)	Ammonia		(1)	्रान्त में प्रयोग रूप से इस रूप में डाल दत है :	THE REAL PROPERTY.
		(2)	Potassium urate		(1)	जमा।नया 	a chaogh a stàite
		(3)	Urea		(2)	पोटाशयम यूरट	ALL NUMBER
		(4)	Calcium carbonate		(⁸)	यू(रया	a coperation
•					(4)	केल्सियम कार्बानेट	THE REPORT OF
	49.	Whic phos	h of the following biomolecules does have phodiester bond ?	a 49.	निम्न होता	लेखित जैवअणुओं में से किस में फॉस्फ़ोडिइस्टर बंध है 2	
		(1)	Fatty acids in a diglyceride		(1)	् एक टाईग्लामेगहर में तमा अप्ल	
		(Ž)	Monosaccharides in a polysaccharide		(1)		ļ
		(3)	Amino acids in a polypeptide		(2)		
		(4)	Nucleic acids in a nucleotide		(3) . (4)	एक पालापप्टाइड में जमाना अम्ल एक न्यूक्लिओटाइड में न्युक्लीक अम्ल	
	50.	The U the y	JN conference of Parties on climate change i ear 2012 was held at :	n 50.)	वर्ष 2 कटाँ	2012 में जलवायु परिवर्तन पर दलों का यु.एन. सम्मेलन	ł
		(1)	Durban		ମ୍ଚା		
÷		(2)	Doha		(1)	<u> </u>	
		(3)	Lima		. (2)	डाह। ^	
		(4)	Warsaw		(3)	लामा	
					(4)	वारसा	
	51.	Arra sequ	nge the following events of meiosis in corre ence :	^{-t} 51.	अर्धर कोजि	रूत्री विभाजन की घटनाओं को सही क्रम में व्यवस्थित 10	ł
•		(a) -	Crossing over		(a)	कासिंग ओवर (जीन विनिमय)(१)	
		(b)	Synapsis		(4) (b)	सिनैप्रिस (सर्वणायन)	
		(c)	Terminalisation of chiasmata		(U) . (a)		
		(d)	Disappearance of nucleolus		(C) (-1)		
		(1)	(b), (a), (d), (c)	•	(d) (1)	फार्प्रका का अदृरय हाना 🗢	
		(2)	(b), (a), (c), (d)	· .	·(1) , (21	(0), (a), (c), (c)	
		(3)	(a), (b), (c), (d)		(3)	(a), (b), (c), (d)	
		(4)	(h) (a) (d) (a)		(4)	(b) (c) (d) (a)	

	Negative Street Street		×			
	ar zonan	•		•	•	
SCO	SCO		1	1		В
	52.	Root	pressure develops due to :	52.	मूलदा	ब किसकी वजह से विकसित होता है ?
ाहले र	À	(1)	Active absorption		(1)	सक्रिय अवशोषण के कारण
में हो	ते	(2)	Low osmotic potential in soil		(2)	मृदा में निम्न परासरणी विभव के कारण
		(3)	Passive absorption	 .	(3)	निष्क्रिय अवशोषण के कारण
य बहुत	T <u>à</u>	(4)	Increase in transpiration	{ .	(4)	वाष्पोत्सर्जन में बढ़ाव के कारण
र्यावरण	53.	Whic separ	ch one of the following animals has two rate circulatory pathways ?	53,)	निम्नरि पथ हो	नखित जंतुओं में से किस एक में दो अलग-अलग परिसंचारी ते हैं ?
हलाती		(1)	Frog		(1)	मेंढक
	- 24/7 - 14-14-14-14-14-14-14-14-14-14-14-14-14-1	(2)	Lizard	} .	(2)	छिपकली 🗍 🖓
ष्ट को	The shutter	(3)	Whale		(8)	हवेल
- UT	-	(4)	Shark	. [*]	(4)	शार्क
	54.	Whic ovula	h of the following events is not associated with ation in human female ?	54.	निम्नति से संब	लखित घटनाओं में से कौन-सी घटना स्त्री में अंडोत्सर्जन iधित नहीं है ?
•.		(1)	Decrease in estradiol		JY.	ईस्ट्रेडिओल में कमी
		(2)	Full development of Graafian follicle		(2)	ग्राफ़ी पुटक का पूर्ण विकास
र बंध		(3)	Release of secondary oocyte	} .	(3)	द्वितीयक अंडक का निर्मोचन
		(4)	LH surge		(4)	LH प्रवाह (LH सर्ज)
	Er	Moot	animala that live in data according to the		ञ्चारा	तर जन्त जो गड़रे समादीय पानी में रहते हैं. वे होते हैं :
		MOSE (1)	animals that live in deep oceanic waters are		(1)	प्राथमिक उपभोक्ता
•		(1)	primary consumers	÷.,	(2)	माध्यमिक उपभोक्ता
	-	(2)	secondary consumers	ļ	(2)	ततीयक उपभोक्त
मेलन		(3)	tertiary consumers		(0)	र्थानन जन्मता भाग्रत्थोत्ती
		(4)	detritivores	{	(4)	जनरद्भाषा
	56.	If you perso for co	u suspect major deficiency of antibodies in a on, to which of the following would you look onfirmatory evidence ?	56.	यदि ः अनुमा किस	आप किसी व्यक्ति में प्रतिरक्षियों की गंभीर कमी का न लगा रहे हैं, तो आप पुष्टि के लिए निम्नलिखित में से से प्रमाण प्राप्त करेंगे ?
		(1)	Fibrinogin in plasma		(1)	प्लाज्मा में फ़िब्रिनोजिन
à m		(2)	Serum albumins		·(2) z	सीरम एल्ब्युमिन
ास्यत		(3)	Haemocytes		(3)	हीमोसाइट
		(4)	Serum globulins			सीरम ग्लोब्युलिन
San	57.	The s rocks	structures that help some bacteria to attach to and/or host tissues are :	57.	वह सं संयोज	रचना जो कुछ जीवाणुओं को चट्टानों या पोषी ऊतक से ी होने में सहायता करती है, क्या है?
	•	(1)	Rhizoids		(1)	मूलाभास
	-	(2)	Fimbriae		J27	झालर
1		(3)	Mesosomes	1	(3)	मीज़ोसोम
		(4)	Holdfast		(4)	होल्डफ़ास्ट

B	1	2 SCO _C
58.	Increase in concentration of the toxicant at successive trophic levels is known as :	58. आनुक्रमिक पोषी स्तर पर विष की सांद्रता बढ़ने को क्या कहरे _{4.} हैं ?
	(1) Biomagnification	(1)/ जैव आवर्धन
	(2) Biodeterioration	(2) जैव अपकर्षण
	(3) Biotransformation	(3) जैव रूपान्तरण 🖂
н - н -	(4) Biogeochemical cycling	(4) जैव भूरसायनिक चक्र
59.	Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of phylum :	59.) शरीर में कोशिकाओं का जाल होना, खाद्य पदार्थ का निस्यंदन करने वाली कशाभिकामय कोशिकाओं से अस्तरित आंतरिक गुहाओं का पाया जाना, तथा अप्रत्यक्ष परिवर्धन का होना किस
	(1) Coelenterata	फ़ाइलम की विशिष्टताएँ हैं ?
	(2) Porifera	(1) सीलेन्टरेटा
•	(3) Mollusca	(2) पॉरिफ़ेरा
	(4) Protozoa	(3) मौलस्का
. ,		(4) प्रीटोजोआ
60.	The oxygen evolved during photosynthesis comes from water molecules. Which one of the following pairs of elements is involved in this reaction ?	60. प्रकाश संश्लेषण के दौरान निष्काषित आक्सीजन जल अणु से आती है। इस अभिक्रिया में निम्नलिखित तत्वों का कौन एक
	(1) Manganese and Chlorine	युग्म शामिल है?
	(2) Manganese and Potassium	(A) मेंगनीज और क्लोरीन
÷., ,	(3) Magnesium and Molybdenum	(2) मेंगनीज और पोटेशियम
· .	(4) Magnesium and Chlorine	(3) मैरिनशियम् और मोलिक्टेनम्
		९ (4) मैग्निशियम और क्लोरीन
61.	The primary dentition in human differs from permanent dentition in not having one of the following type of teeth :	61. मानव में प्राथमिक दतविन्यास स्थायी दतविन्यास से इस नाते भिन्न होता है कि प्राथमिक दतविन्यास में निम्नलिखित कौन से
	(1) Canine	प्रकार के दात नहा होत ?
•	(2) Premolars	(1) रदनक
	(3) Molars γ	(2) अग्रचवणक
•	(4) Incisors	(3) चवणक (4) कृंतक
62.	Coconut water from a tender coconut is :	62 कच्चे नारियल का नारियल पानी क्या है?
· ·	(1) Immature embryo	(1) अपरिपक्व भण
	(2) Free nuclear endosperm	(२) मक्त केन्द्रकी भूणपोष
	(3) Innermost layers of the seed coat	(3) बीज चोल की सबसे अंदर वाली सतहें
	(4) Degenerated nucellus	(4) अपभ्रष्ट बीजाण्डकाय
63.	Which of the following layers in an antral follicle is acellular ?	63.) एन्ट्रमा (antral) पुटक में निम्नोलखित में से कॉन-सो अकाशिकॉय होती है ?
	(1) Granulosa	(1) ग्रैनुलोसा (कणिकीय)
	(2) Theca interna	(2) थीका इंटरना (अंतर प्रावरक)
	(3) Stroma	🏑 (3) स्ट्रोमा (पीठिका)
	(4) Zona pellucida	(4) ज़ोना पेल्यूसिडा (पारदर्शी अंडावरण)

(

SCO	со		1	3	ĸ	B
या कहते	4.	The ir	ntroduction of t-DNA into plants involves :	64.	पादपों	में टी-डी.एन.ए. (t-DNA) के प्रवेश से क्या होता है ?
		(1)	Infection of the plant by Agrobacterium tumefaciens			पादप में <i>एग्रोबैक्टीरियम ट्युमिफेशिएन्स</i> द्वारा संक्रमण होता है।
98793-1-1286-90-12879999 		(2)	Altering the pH of the soil, then heat-shocking the plants		(2)	मृदा के pH में बदलाव आता है और पादप में ताप प्रघात होता है।
Andrea Martine Prace	•	(3)	Exposing the plants to cold for a brief period		(3)	पादपों को थोडे अल्पकाल के लिए शीत में उदभासित
स्यंदन		(4)	Allowing the plant roots to stand in water	· .		करना पड़ता है।
ातारक किस					(4)	पादप मूलों को जल में खड़े रहने देता है।
C. C	5.	In wh two th	nich group of organisms the cell walls form nin overlapping shells which fit together ?	65.	जीवों	के किस समूह में कोशिका भित्ति दो पतली अतिव्यापी
		(1)	Chrysophytes		कवच	ों की बनी होती हैं जो एकसाथ आसजित होती हैं ?
		(2)	Euglenoids		JX)	क्राइसोफाइट
		(3)	Dinoflagellates		(2)	यूग्लीनॉइड
ण से	•	(4)	Slime moulds		(3)	डायनोफ्लैजिलेट
एक					(4)	अवपंक कवक
6	56.	Hum	an urine is usually acidic because :	66	, मानव	मत्र आमतौर से अम्लीय होता हे क्योंकि :
		(1)	the sodium transporter exchanges one hydrogen ion for each sodium ion, in peritubular capillaries.		, (1)	ू परिनलिकाकार कोशिकाओं में, सोडियम ट्रांस्पोर्टर प्रत्येक सोडियम आयन का विनिमय एक हाइड्रोजन आयन से
		(2)	excreted plasma proteins are acidic.		· · ·	
नाते	•	(3)	potassium and sodium exchange generates	ĺ	(2)	उत्साजत प्लाज्मा प्राटान अम्लाय होता है।
न से			acidity.		(3)	पाटाशयम आर सा।डयम ावानमय म अम्लता पदा हा जाती है।
		(4)	hydrogen ions are actively secreted into the filtrate.		(4)	हाइड्रोजन आयन सक्रिय रूप से निस्यंद से स्रवित हो जाते हैं।
. 6	67.	In ph take p	otosynthesis, the light-independent reactions place at :	67.	प्रकाश	1 संश्लेषण में प्रकाश-स्वतन्त्र अभिक्रियायें कहाँ होती हैं ?
		(1)	Thylakoid lumen		(1)	थाइलेकॉइड अवकाशिका
		(2)	Photosystem I	ļ .	(2)	प्रकाशतन्त्र - 1
		(3)	Photosystem II		(3)	प्रकाशतन्त्र - II
and the second secon		(4)	Stromal matrix		(4)	पीठिकाय आधात्री
जीय 6	68.	In ma	ammalian eye, the 'fovea' is the center of the	68.	स्तनध हे जह	गरी प्राणी के नेत्र में ' खात' (फ़ोविया) दृश्य क्षेत्र का केन्द्र गँ :
And the second second	•	(1)	high density of cones oc c ur, but has no rods.		(1)	शंकुओं की सघनता अधिक होती है, लेकिन शलाकाएँ नहीं होती।
i i i i i i i i i i i i i i i i i i i		(2)	the optic nerve leaves the eye.		(2)	चाक्षप तंत्रिका नेत्र से बाहर निकलती है।
:		(3)	only rods are present.		() (31	केवल शलाकाएँ होती हैं।
					~~~)	

SC B 14 The DNA molecule to which the gene of interest is 69. 69. उस डी.एन.ए. अणु को क्या कहते हैं जिसमें क्लोनन के लि integrated for cloning is called : रुचि वाली जीन को समाकलित किया जाता है? Transformer (1)(1)रूपान्तरक (2)Vector संवाहक (2) (3) Template रूपदा (3) (4)Carrier (4) वाहक Pick up the wrong statement : 70. गलत कथन को चुनिए : 70. (1) Cell wall is absent in Animalia एनिमेलिया में कोशिका भित्ति अनुपस्थित होती है। (1) (2)Protista have photosynthetic and प्रोटिस्टा में पोषण की विधियां प्रकाशसंश्लेषणी ए (2)heterotrophic modes of nutrition विषमभोजी होती हैं। Some fungi are edible (3)कुछ कवक खाने योग्य होते हैं। (3) (4)Nuclear membrane is present in Monera (A) मोनेरा में केन्द्रक कला उपस्थित होती है। 71. Among china rose, mustard, brinjal, potato, guava, 71. गुडहल, सरसों, बैंगन, आलू, अमरूद, खीरा, प्याज और ट्यूलि cucumber, onion and tulip, how many plants have में से कितनों में ऊर्ध्ववर्ती अण्डाशय है? superior ovary? पांच (1)(1)Five (2) छ: Six (2)Ø तीन (3)Three (4)चार (4)· Four उस फुप्फुसी रोग का नाम बताइए जिसमें कूपिकीय भित्तियों के 72. 72. Name the pulmonary disease in which alveolar क्षत हो जाने के कारण गैस-विनिमय में शामिल कृपिकीय surface area involved in gas exchange is drastically सतही क्षेत्र बहुत अधिक कम हो जाता है। reduced due to damage in the alveolar walls. प्लूरिसी (1)(1)Pleurisy वातंस्फीति (2)(2) Emphysema न्यूमोनिया (3) (3)Pneumonia अस्थमा (4)Asthma (4) एक लम्बे वृक्ष की दारू वाहिकाओं में जल का स्तम्भ अपने भार 73. 73. A column of water within xylem vessels of tall trees से नहीं टूटता। इसका कारण है : does not break under its weight because of : जल में घुलित शर्करा (1)(1) Dissolved sugars in water जल की तनन शक्ति (2)(2)Tensile strength of water दारू वाहिकाओं का लिग्निनकरण (3)(3) Lignification of xylem vessels धनात्मक मूल दाब (4)Positive root pressure (4) अम्ल वर्षा वातावरण में किसकी सांद्रता के अधिकता के कारण 74. 74. Acid rain is caused by increase in the atmospheric होती है ? concentration of : SO2 और NO2 (2) (1) $SO_2$  and  $NO_2$ SO3 और CO (2) SO₃ and CO (2)

(3)  $CO_2$  and CO

(4)  $O_3$  and dust

(4) O3 और धूल

(3)

CO2 और CO

Sec. Co         15         16         17         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         38         <	- 34) -								••••••				· · ·	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-													
The enzyme that is not present in succes enterious is: $\frac{1}{2} e^{\frac{1}{2}} e^{\frac{1}{2}}$ The enzyme that is not present in succes enterious is: $\frac{1}{2} e^{\frac{1}{2}} e^{1$	SC		)				15		•			· .	· . ·	B
(1)         multase           (2)         nucleases           (3)         nucleosidase           (4)         lipase           (5)         nucleosidase           (6)         In which of the following interactions both pattners are adversely affected?           (7)         Competition           (7)         Competition           (7)         Prediction           (7)         Prediction           (7)         Match the following list of microbes and their importance:           (8)         Preduction of immunosuppressive agents           (9)         Monscose           (10)         Reference           (11)         Reference           (12)         Preduction of immunosuppressive agents           (11)         Reference           (12)         (13)           (14)         Reference           (15)         Reference           (16)         Production of immunosuppressive agents           (17)         Interaction           (18)         Reference           (11)         Reference           (11)         Right agent a	के f	-	The e	nzyme that	is no	ot present in succus enterio	ıs	75.	वह एं	जाइम जो र	नकस एंटेरिव	कंस (आंत्र	रस) में मौजूद न	हीं
<ul> <li>(1) 加に高速</li> <li>(2) nucleases</li> <li>(3) nucleases</li> <li>(4) lipase</li> <li>(5) In which of the following interactions both partners are adversely affected?</li> <li>(6) In which of the following interactions both partners are adversely affected?</li> <li>(7) Competition</li> <li>(8) Competition</li> <li>(9) Predation</li> <li>(1) Tarcka</li> <li>(1) Tarcka</li> <li>(2) Tarkity</li> <li>(3) Competition</li> <li>(4) Mutualism</li> <li>(4) Mutualism</li> <li>(5) Predation</li> <li>(6) Production of importance:</li> <li>(7) Tarcha the following list of microbes and their importance:</li> <li>(1) Tarcka</li> <li>(2) Predation</li> <li>(3) Parasitism</li> <li>(4) Mutualism</li> <li>(5) Production of importance:</li> <li>(6) Monestis (the following of Switscheese purpures</li> <li>(7) Approximation (iniii) Commercial production of imanui</li> <li>(7) Tarcha the following intrinitive plants.</li> <li>(7) (1) (11) (11) (11) (11) (11) (11) (1</li></ul>	47.1		15 [°] :	maltaco					होता ?	÷		•	· · ·	
<ul> <li>(a) nucleosidase</li> <li>(b) nucleosidase</li> <li>(c) nucleosidase</li> <li>(d) lipase</li> <li>(e) nucleosidase</li> <li>(f) lipase</li> <li>(f) nucleosidase</li> <li>(g) afferdia</li> &lt;</ul>		No. of the second second	(1) (2)	nucleases					(1)	माल्टेज़			• •	
<ul> <li>(d) lipase</li> <li>(d) lipase</li> <li>(e) lipase</li> <li>(f) which of the following interactions both partners are adversely affected 2.</li> <li>(f) Competition</li> <li>(g) Predation</li> <li>(g) Preduction of lipase</li> <li>(g) Production of lipase</li> <li>(h) Manacar</li> <li>(h) Manacar</li> <li>(h) Manacar</li> <li>(h) Manacar</li> <li>(h) Production of lipase</li> <li>(h) Manacar</li> <li>(h) Production of lipase</li> <li>(h) Manacar</li> <li>(h) Manacar</li> <li>(h) Manacar</li> <li>(h) Production of lipase</li> <li>(h) Manacar</li> <li>(h) Manacar</li></ul>		Concernance of the	(2)	nucleosida	ase				J)	न्यूक्लिऐउ				
<ul> <li>(d) citics</li> <li>(e) In which of the following interactions both partners are adversely affected?</li> <li>(f) Competition</li> <li>(g) Preduction</li> <li>(g) Preduction</li> <li>(g) Preduction</li> <li>(g) Preduction</li> <li>(g) Preduction</li> <li>(g) Preduction of immunosuppressive agents immunosuppressive agents</li> <li>(h) Monescus (ii) Ripening of Swiss cheese purprens (ii) Ripening of Swiss cheese purprens (iii) Ripening of Swiss cheese purprens (iii) Commercial pioduction of extanul in their polygonum (iii) Commercial pioduction of blood-first (iii) (ii) (iv) (i) (iii) (iv) (i) (iii) (iv) (i) (iii) (ii) (</li></ul>		SIGNAR BAS	(4)	lipase				-	(3)	न्यूक्लिओ	सिडेज		· ·	
<ul> <li>are adversely affected?</li> <li>(1) Competition</li> <li>(2) Predation</li> <li>(3) Parasitism</li> <li>(4) Mutualism</li> <li>(4) Mutualism</li> <li>(5) Production of incrobes and their importance:</li> <li>(6) Submonuces</li> <li>(7) Match the following list of microbes and their importance:</li> <li>(6) Submonuces</li> <li>(7) Production of incrobes and their importance:</li> <li>(6) Submonuces</li> <li>(7) Production of incrobes and their importance:</li> <li>(7) Representation</li> <li>(7) Production of incrobes and their importance:</li> <li>(7) Production of incrobes and their importance:</li> <li>(7) Trichoderma</li> <li>(7) Production of incrobes and their importance:</li> <li>(7) Trichoderma</li> <li>(7) Production of incrobes and their importance:</li> <li>(7) Trichoderma</li> <li>(7) Production of incrobes and their importance:</li> <li>(7) Trichoderma</li> <li>(8) Ob (c) (d)</li> <li>(9) O(1)</li> <li>(9) O(1)</li> <li>(1) (ii) (i) (i)</li> <li>(2) (iv) (ii) (ii) (ii)</li> <li>(3) (iv) (ii) (ii) (ii)</li> <li>(4) (iii) (ii) (iii)</li> <li>(5) O(1)</li> <li>(6) O(1)</li> <li>(7) O(1)<th></th><th></th><th>()</th><th>· 1 .</th><th></th><th></th><th></th><th></th><th>(4)</th><th>लाइपज</th><th></th><th></th><th>· .</th><th></th></li></ul>			()	· 1 .					(4)	लाइपज			· .	
(1)       Competition         (1)       Competition         (2)       Predation         (3)       Parasitism         (4)       Mutualism         (5)       Sociaronyces         (6)       Sociaronyces         (7)       Match the following list of microbes and their importance:         (7)       Match the following list of microbes and their importance:         (7)       Match the following of Swiss cheese         (7)       Manzacus         (8)       Sociaronyces         (9)       Sociaronyces         (10)       Manzacus         (11)       Rinii (11)         (12)       Rive (11)         (13)       Commercial production of enteroid formula cirrim (11)         (14)       Propionibactorium (11)         (15)       Rive (11)         (16)       Rive (11)         (17)       (18)         (18)       (19)         (19)       Rive (11)         (10)       (11)         (11)       (11)         (12)       (11)         (11)       (11)         (12)       (11)         (13)       (11)         (14)		6.	In wh	iich of the fo Iversely affe	llow ected	ing interactions both partne ?	rs   .	76.	निम्नर्गि रूप मे	लखित में से प्रभावित ह	किस पारस्प ोते हैं ?	रिक क्रिया 1	में दोनों संगी प्रतिकू	ल
(10) U       (2) Predation         (3) Parasitism       (4) Mutualism         (4) Mutualism       (3) Preduction of immunosuppressive agents         (6) Schwomyces       (1) Production of immunosuppressive agents         (6) Morescue       (1) Ripening of Swiss cheese         (7) Trichoderma       (1) Ripening of Swiss cheese         (7) Trichoderma       (1) Ripening of Swiss cheese         (8) Morescue       (11) Ripening of Swiss cheese         (9) Projenductorium       (11) Commercial production of eiranci         (11) (iii) (iv) (i) (ii)       (12) (iv) (iii) (ii)         (12) (iv) (iii) (ii)       (13) (iv) (ii)         (13) (iv) (ii) (ii)       (14) (iii) (ii)         (14) (iii) (ii) (iv) (ii)       (15) (iii)         (15) is agene evolved during Pliocene.       (11) sie expressed only in primitive plants.         (12) is agene evolved during Pliocene.       (13) warea qara tare til Pastat gast stat §1         (14) without plasma membrane       (14) without plasma membrane         (2) without nucleus       (2) without nucleus         (3) undergoing division       (3) undergoing division         (4) without cell wall       (4) without cell wall	। हैं ।		(1)	Competiti	on -		· [		(1)	स्पर्धा	4. 		• •	• .
(3) Parasitism (4) Mutualism (4) Mutualism (5) Transfer (6) Monescue (7) Match the following list of microbes and their importance: (7) Match the following list of microbes and their importance: (8) Monescue (9) Monescue (10) Rither A state a sureal (11) Gonmercial production of entanuoi (12) Givy (111) (11) (13) Givy (11) (11) (14) (111) (10) (10) (15) Gilt (15) Gilt (16) Monescue (17) Match the following list of microbes and their (10) Monescue (11) Gonmercial production of entanuoi (12) Givy (111) (11) (11) (11) (11) (11) (11) (1	ाणी ए		(2)	Predation	. •				(2)	परभक्षण				
<ul> <li>(4) Mutualism</li> <li>(4) Mutualism</li> <li>(4) Mutualism</li> <li>(4) Mutualism</li> <li>(5) Monscus</li> <li>(6) Production of immunosuppressive agents</li> <li>(7) Trichoderma</li> <li>(10) Production of einanui</li> <li>(11) Ripening of Swiss cheese</li> <li>(12) Trichoderma</li> <li>(11) Commercial production of einanui</li> <li>(12) Trichoderma</li> <li>(11) (11) (11) (12) (11) (11) (11) (11)</li></ul>			(3)	Parasitism	۱ ۱			- '	(3)	परजीवित	· ·	• • •		
7.       Match the following list of microbes and their importance:       77.       सूर्यस्वीयों की और उनके महत्व की निम्नलिखित सूची का मिलान की जिए :         (a)       Sacharomyces (i)       Production of immunosuppressive agents       (a)       Production of einanoi         (b)       Monascus (ii)       Ripening of Swiss cheese       (b)       Natch the following list of microbes and their importance:         (c)       Production of einanoi       (iii)       Commercial production of einanoi       Nater a mater and an aventa importance         (a)       (b)       (c)       (d)       Initiation (iii)       Initiation (iii)       Initiation (iii)         (c)       Propioubacterium (iv)       Production of blood-cholesterol lowerug agents       (a)       (b)       (c)       Initiation (iv)         (d)       (i)       (iv)       (iv)       Rift an azuatatifan       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)         (d)       (iv)       (iv)       (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)         (d)       (iv)       (iv)       (iv)       (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)       Initiation (iv)			(4)	Mutualisn	י ר י				_(A)	सहोपकानि	ता			
(a)       Sacharomyces crevisiae       (i)       Production of immunosuppressive agents         (b)       Monascus polysporum       (ii)       Ripening of Swiss cheese enanoi         (c)       Trichoderma polysporum       (iii)       Commercial production of emanoi       (i)       River all as an unantil culture         (c)       Projonibacterium polysporum       (iv)       Production of blood- cholesterol lowering agents       (iv)       River area in directive active       (iv)       River and an unantil culture         (d)       Propionibacterium (iv)       (iv)       River and an unantil culture       (iv)       River and an unantil culture         (d)       (iv)       (iv)       River and an unantil culture       (iv)       River and an unantil culture         (d)       (iv)       (iv)       River and an unantil culture       (iv)       River and an unantil culture         (iv)       (iv)       River and an unantil culture       (iv)       River and an unantil culture         (d)       (iv)       (iv)       (iv)       River an an unantil culture         (iv)       (iv)       (iv)       (iv)       River an an unantil culture         (iv)       (iv)       (iv)       (iv)       River an an unantil culture         (iv)       (iv)       (iv)	ट्यूलि	77.	Matc impo	h the follo rtance :	wing	; list of microbes and the	eir	77.	सूंक्ष्मच मिलान	नीवों की अ न कोजिए :	गैर उनके म	हत्व की नि	म्नलिखित सूची र	का
$\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}$ $\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec{r}_{i}\vec$		<b>(</b> a)	Sacharc	oniyces	(i)	Production of		<u></u>	सैकैरोम	 गाइसी.ज		प्रतिरक्षी स		7
(b)       purpureus       (ii)       Ripening of Swiss.cheese         (c)       Trichoderma       (iii)       Commercial production of enarui         (c)       Projonibacterium       (iii)       Commercial production of blood-cholesterol lowering agents         (d)       Projonibacterium       (iv)       Production of blood-cholesterol lowering agents         (a)       (b)       (c)       (d)       Review       (iv)       River # able a presson         (a)       (b)       (c)       (d)       (iv)       River # able action of blood-cholesterol lowering agents         (a)       (b)       (c)       (d)       (iv)       River # able action of blood-cholesterol lowering agents         (a)       (b)       (c)       (d)       (iv)       (iv)       River # able action of blood-cholesterol lowering agents         (a)       (b)       (c)       (d)       (iv)       (iv)       River # able action of the action of			Monasc	us		mununosuppressive agent	<u> </u>	(a)	 सर्विसि	आई	$\int \int \int (i)$	उत्पादन		•
Trichoderma polygorum(iii)Commercial production of einanui(d)Propionibacterium sharmanii(iv)Production of blood- cholesterol lowerng agents(a)(b)(c)(d)(i)(iii)(iv)Rate(a)(b)(c)(d)(1)(iii)(iv)(iii)(2)(iv)(iii)(i)(3)(iv)(ii)(iii)(4)(iiii)(iv)(iii)(2)is a gene evolved during Pliocene.(2)scale a gene a trait only in combination with another gene(4)controls a trait only in combination with another gene(3)controls a trait only in combination with another gene(4)controls a trait only in primitive plants.(2)without nucleus(2)without nucleus(2)without nucleus(3)undergoing division(3)faymion $\hat{g}$ (4)without nucleus(2)without nucleus(3)undergoing division(4)without cell wall(4)without cell wall(4)without cell wall		(b)·	purpur	eus	(ii).	Ripening of Swiss cheese		(b)	मोनैस्क	स पर्प्यूरियर	7 X (ii)	स्विस चीः	ज को पकाना	
TrainingProprioribacterium sharmaniiProduction of blood- cholesterol lowering agents $3$ Tage(a)(b)(c)(d)(a)(b)(c)(d)(a)(b)(c)(d)(a)(b)(c)(d)(b)(c)(d)(c)(ii)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(iv)(iii)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)	• •	(c)	Trichoa polyspc	lerma orum	(iii)	Commercial production of emanul	 	(c).	ट्राइकार	डर्सा पोल्तेर		ईथैनॉल क	ा व्यावसायिक	
(a) (b) (c) (d)       (ii)       (iv) (iii) (ii)         (a) (b) (c) (d)       (iii)       (iv) (iii) (iv)         (1) (iii) (iv) (i) (ii)       (i) (iii)         (2) (iv) (iii) (i) (ii)       (iv) (iii)         (3) (iv) (ii) (i) (ii)       (iv) (iii)         (4) (iiii) (i) (iv) (ii)       (iv) (iii)         (1) is expressed only in primitive plants.       (2) is a gene evolved during Plocene.         (3) controls a trait only in combination with another gene       (1) without plasma membrane         (4) controls multiple traits in an individual.       (3) undergoing division         (4) without nucleus       (3) undergoing division         (4) without cell wall       (4) without cell wall	त्तेयों के एन्ट्री	(d)	Propion	ubacterium nii	(i <u>v</u> )	Production of blood-						। उत्पादन 		_
(a) (b) (c) (d)       (a) (b) (c) (d)         (1) (iii) (iv) (i) (ii) (ii)       (a) (b) (c) (d)         (2) (iv) (iii) (i) (i)       (i) (iii)         (3) (iv) (ii) (i) (ii)       (i) (iii)         (4) (iii) (i) (iv) (ii)       (i) (iv) (ii)         (5) (c) (d)       (i) (ii)         (6) (c) (d)       (i)         (7) (ii) (ii) (ii) (ii)       (iii) (i)         (4) (iii) (i) (iv) (ii) normbination with another gene       (1) केवल अदय पादपों में अभिव्यक्त होता है।         (3) controls a trait only in combination with another gene       (2) अत्यन्त नूतन काल में विकसित हुआ जीन।         (3) controls a trait only in combination with another gene       (3) अन्य जीन से संयोजित होकर केवल एक लक्षण को तियन्त्रित करता है।         (4) controls multiple traits in an individual.       (4) controls multiple traits in an individual.         (2) without nucleus       (2) केन्द्रक रहित         (3) undergoing division       (2) केन्द्रक रहित         (3) undergoing division       (3) विभाजित होती हुई         (4) without cell wall       (4) कोशिका भित्त रहित	ापकाय	<u> </u>		(-) (1-)				(d)	) प्रार्थना प्रार्धनाः	4 4	(iv)	करने का ह	कारास्ट्राण फन	
(1)       (ii)       (i)       (i)       (i)       (i)         (2)       (iv)       (ii)       (i)       (i)       (ii)         (3)       (iv)       (i)       (i)       (ii)       (ii)         (4)       (iii)       (i)       (iii)       (iii)       (iii)         (4)       controls a trait only in combination with another gene       (4)       controls multiple traits in an individual.       79.       A protoplast is a cell :       (1)       vithout nucleus       (2)       without nucleus       (3)       undergoing division         (2)       without cell wall       (4)       without cell wall       (4)       without cell wall       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (4)       (			. (1)	(a) (b)	(C)	) (d) (ii)	.		<u>Xi ji n</u>	(2) (1	a) (a)	(d)		]
(1)       (ii)       (ii)       (iii)         (2)       (iv)       (ii)       (ii)         (3)       (iv)       (ii)       (iii)         (4)       (iii)       (i)       (iii)         (4)       controls a trait only in combination with another gene       (4)       controls multiple traits in an individual.         (7)       A protoplast is a cell :       (1)       without nucleus         (2)       (iii)       (iii)         (1)       without nucleus       (2)       size a stati tail         (4)       controls division       (2)       ide uifing that         (4)       without cell wall       (2)       argent tag			(1) (2)	(iv) $(iv)$	. (i) . (ii	(II)	}		<u>(1)</u>	(a) (i (iii) (i	$(\mathbf{v}) = (\mathbf{i})$	(u) (ii)		
1ने भार(a) (ii) (i) (ii) (ii) (ii) (ii) (ii)(a) (iii) (ii) (ii) (ii)1-1(a) (iii) (i) (iv) (ii)1-1(b) (iv) (ii) (iv) (ii)1-1(c) (c) (c) (c) (c) (c)1-1(c) (c) (c) (c) (c)(c) (c) (c) (c) (c) (c)(c) (c) (c)(c) (c) (c) (c) (c)(c) (c) (c)(c) (c) (c) (c) (c)(c) (c)(c) (c) (c) (c)(c) (c) <tr< td=""><td></td><td></td><td>(3)</td><td>(iv) $(ii)$</td><td>(i)</td><td>(iii)</td><td>} ` } `</td><td></td><td>(2)</td><td>(iv) (i</td><td>ii) (ii)</td><td>(i)</td><td></td><td></td></tr<>			(3)	(iv) $(ii)$	(i)	(iii)	} ` } `		(2)	(iv) (i	ii) (ii)	(i)		
में भार78.A pleiotropic gene : (1) is expressed only in primitive plants. (2) is a gene evolved during Pliocene. (3) controls a trait only in combination with another gene (4) controls multiple traits in an individual.78.एक बहुप्रभाविक जीन : (1) केवल अद्य पादपों में अभिव्यक्त होता है। (2) अत्यन्त नूतन काल में विकसित हुआ जीन। (3) अन्य जीन से संयोजित होकर केवल एक लक्षण को नियन्त्रित करता है। (4) controls multiple traits in an individual.कारण79.A protoplast is a cell : (1) without plasma membrane (2) without nucleus (3) undergoing division (4) without cell wall79.A protoplast is a cell : (1) without cell wall			(4)	(iii) (i)	(iy	7) (ii)	. }		(3)	(iv) (i	i) (i)	(iii)	· ·	
78. A pleiotropic gene :       78. एक बहुप्रभाविक जीन :         (1) is expressed only in primitive plants.       (2) is a gene evolved during Pliocene.         (2) is a gene evolved during Pliocene.       (2) अत्यन्त नूतन काल में विकसित हुआ जीन ।         (3) controls a trait only in combination with another gene       (3) अन्य जीन से संयोजित होकर केवल एक लक्षण को नियन्त्रित करता है ।         (4) controls multiple traits in an individual.       (4) controls multiple traits in an individual.         (79. A protoplast is a cell :       (1) जीवद्रव्यक एक कोशिका है :         (1) without plasma membrane       (1) without nucleus         (3) undergoing division       (2) केन्द्रक रहित         (4) without cell wall       (4) कोशिका भित्त रहित	ग्ने भाग			() (-)		, ()	·		(4)	· (111) (1	.) (1V)	(11)		
<ul> <li>(1) is expressed only in primitive plants.</li> <li>(2) is a gene evolved during Pliocene.</li> <li>(3) controls a trait only in combination with another gene</li> <li>(4) controls multiple traits in an individual.</li> <li>(4) controls multiple traits in an individual.</li> <li>(4) controls at cell :</li> <li>(1) केवल अद्य पादपों में अभिव्यक्त होता है।</li> <li>(2) अत्यन्त नूतन काल में विकसित हुआ जीन।</li> <li>(3) अन्य जीन से संयोजित होकर केवल एक लक्षण को नियन्त्रित करता है।</li> <li>(4) controls multiple traits in an individual.</li> <li>(4) controls multiple traits in an individual.</li> <li>(5) एक व्यष्टि में बहुविध लक्षणों को नियन्त्रित करता है।</li> <li>(6) एक व्यष्टि में बहुविध लक्षणों को नियन्त्रित करता है।</li> <li>(79) जीवद्रव्यक एक कोशिका है :</li> <li>(1) without plasma membrane</li> <li>(2) without nucleus</li> <li>(3) undergoing division</li> <li>(4) without cell wall</li> <li>(1) without cell wall</li> <li>(1) without cell wall</li> </ul>	יי אוע	78.	A ple	iotropic g <mark>e</mark> r	ne :	·		78.	एक ब	रहुप्रभाविक -	जीन :			
<ul> <li>(2) is a gene evolved during Pliocene.</li> <li>(3) controls a trait only in combination with another gene</li> <li>(4) controls multiple traits in an individual.</li> <li>(5) जीवद्रव्यक एक कोशिका है :</li> <li>(1) without plasma membrane</li> <li>(2) अत्यन्त नूतन काल में विकसित हुआ जीन ।</li> <li>(3) अन्य जीन से संयोजित होकर केवल एक लक्षण को नियन्त्रित करता है ।</li> <li>(4) controls multiple traits in an individual.</li> <li>(5) जीवद्रव्यक एक कोशिका है :</li> <li>(1) without plasma membrane</li> <li>(2) without nucleus</li> <li>(3) undergoing division</li> <li>(4) without cell wall</li> <li>(2) कोन्द्रक रहित</li> <li>(3) विभाजित होती हुई</li> <li>(4) कोशिका भित्त रहित</li> </ul>	. [		(1)	is express	ed on	ly in primitive plants.			(1)	केवल अ	द्य पादपों में	ां अभिव्यक्त	होता है।	
<ul> <li>(3) controls a trait only in combination with another gene</li> <li>(4) controls multiple traits in an individual.</li> <li>(4) controls multiple traits in an individual.</li> <li>(4) controls multiple traits in an individual.</li> <li>(5) अन्य जीन से सयोजित होकर केवल एक लक्षण को नियन्त्रित करता है।</li> <li>(4) controls multiple traits in an individual.</li> <li>(5) एक व्यष्टि में बहुविध लक्षणों को नियन्त्रित करता है।</li> <li>(7) जीवद्रव्यक एक कोशिका है :</li> <li>(1) without plasma membrane</li> <li>(2) without nucleus</li> <li>(3) undergoing division</li> <li>(4) without cell wall</li> <li>(5) अन्य जीन से सयोजित होती हुई</li> <li>(4) कोशिका भित्ति रहित</li> </ul>			(2)	is a gene e	volve	ed during Pliocene.			(2)	अत्यन्त नृ	तन काल में	विकसित हु	आ जीन।	
<ul> <li>(4) controls multiple traits in an individual.</li> <li>(4) controls multiple traits in an individual.</li> <li>(4) ven 型 定 并 &gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</li></ul>			(3)	controls a another ge	i trai e <mark>n</mark> e	t only in combination wi	th [		. (3)	अन्य जोग नियन्त्रित	न से संयोजि करता है।	त होकर के	वल एक लक्षण	को
कारण79. A protoplast is a cell :79. जीवद्रव्यक एक कोशिका है :(1) without plasma membrane(1)- प्रद्रव्य झिल्ली रहित(2) without nucleus(2) केन्द्रक रहित(3) undergoing division(3) विभाजित होती हुई(4) without cell wall(4) कोशिका भित्त रहित			(4)	controls n	nultip	ble traits in an individual.	•		(A)	एक व्यषि	ट में बहुविध	। लक्षणों को	नियन्त्रित करता ह	<u>ह</u> ै।
<ul> <li>(1) without plasma membrane</li> <li>(2) without nucleus</li> <li>(3) undergoing division</li> <li>(4) without cell wall</li> <li>(1) 牙로亞 第座 代表 代表</li></ul>	<b>कारण</b>	79.	A pro	otoplast is a	cell :			79.	जीवद्र	व्यक एक व	कोशिका है :	x		
(2) without nucleus(2) केन्द्रक रहित(3) undergoing division(3) विभाजित होती हुई(4) without cell wall(4) कोशिका भित्ति रहित	ALERY L'HOUSE		(1)	without p	lasma	a membrane			<u>(</u> ]}-	प्रद्रव्य झि	ल्ली रहित	•		
(3)undergoing division(3)विभाजित होती हुई(4)without cell wall(4)कोशिका भित्ति रहित	Starring in the	÷	(2)	without n	ucleu	<b>IS</b>		•	(2)	केन्द्रक र	हित		·	
(4) without cell wall (4) कोशिका भित्ति रहित			(3)	undergoir	ng div	vision			(3)	विभाजित	होती हुई			
			(4)	without co	ell wa	all	.		(4)	कोशिका	भित्ति रहित			

В			16		S
80.	Whic of SC	h of the following are most suitable indica ₂ pollution in the environment ?	tors $80$ .	निम्नति योग्यः	लखित में से कौन एक पर्यावरण में SO ₂ प्रदूषण का संकेतक है 7
	(1)	Lichens		0X	लाइकेन
	(2)	Conifers		(2)	शंकधारी
	(3)	Algae		(3)	शैवाल
	(4)	Fungi		(4)	केवर्क
81.	Graf	ted kidney may be rejected in a patient due	e to :   §1.	किसी	रोगी में प्रत्यारोपित वृक्क (किडनी) को अस्वीकार
	(1)	Humoral immune response		कारण	किया जा सकता है ?
	(2)	Cell-mediated immune response		(1)	त्रिदोशज (ह्यूमोरल) प्रतिरक्षा अनुक्रिया
- 	(3)	Passive immune response		_(2) ⁻	कोशिका-माध्यित प्रतिरक्षा अनुक्रिया
	(4)	Innate immune response		(3)	निष्क्रिय प्रतिरक्षा अनुक्रिया
á.				(4)	सहज प्रतिरक्षा अनुक्रिया
82.	(1)	ch one of the following fruits is parthenocal Brinial	рю? 82.	निम्न	लेखित में से कौन सा फल अनिषेकफलनीक है?
	(*)	Annie		(1)	बेंगन
	(2)	Jackfruit		(2)	सेब
	(4)	Banana		(3)	कटहल
		Dununu		. (4)	केला
83.	Whi	ch of the following diseases is caused	by a		
•	prot	Court life	83.1	ानम्ना	लाखत म स कान-सा रोग प्राटाजीओ क कारण हो।
	(1)	Syphilis		(1)	ासफालस
	(2)	Bahasiaaia		(2)	इफ्लूएजा
	(3) (4)	Plactomuscaio		(3)	बेबासआसस
	(4)	Diastomycosis		(4)	ब्लास्टामाइकोसिस
84.	ln h unti	uman females, meiosis-II is not compl }?	eted 84.	मानव ही हो	म मादाओं में, अर्धसूत्रीविभाजन-II किसके पूर्ण हो ज Iता है ?
	(1)	puberty		(1)	यौवनारंभ
	(2)	fertilization		(2)	निषेचन
	(3)	uterine implantation		(3)	गर्भाशय में अतःस्थापन
	(4)	birth		(4)	जन्म-
85	Mal	e gametophyte in angiosperms produces :	85.	आवृत	त बीजी पादपों में नर युग्मक क्या बनाता है ?
• • • • •	(1)	Two sperms and a vegetative cell		(H)	दो शुक्राणु और एक कायिक कोशिका
ан 1997 - М	(2)	Single sperm and a vegetative cell		(2)	एक शुक्राणु और एक कायिक कोशिका
· ·	(3)	Single sperm and two vegetative cells		(3)	एक शुक्राणु और दो कायिक कोशिकायें
	(4)	Three sperms		(4)	तीन शकाण

SCO		1	7		B
86.	Doct produ sound	ors use stethoscope to hear the sounds uced during each cardiac cycle. The second d is heard when :	86.	प्रत्येक सुनने दसरी	हृद् चक्र के दौरान उत्पन्न होने वाली ध्वनि - तरंगों को के लिए चिकित्सक स्टेथोस्कोप का उपयोग करते हैं। ध्वनि उस समय सनाई देती है जब
	(1)	AV valves open up		(1)	AV कपाट खल जाते हैं।
	(2)	Ventricular walls vibrate due to gushing in of blood from atria		(2)	अलिंदों से रुधिर के बलपूर्वक निलय में आने के कारण
	(3)	Semilunar valves close down after the blood flows into vessels from ventricles		(3)	निलयों भित्तियों में कपन्न होने लगता हैं। निलयों से वाहिकाओं में रुधिर के बहने के बाद अर्धचंद्राकार
۰.	. (4)	AV node receives signal from SA node	÷.,		कपाट बन्द हो जाते हैं।
t, s			•	(4)	AV पर्वसंधि SA पर्वसंधि से संकेत प्राप्त करती है।
87.	Auxi	n can be bioassayed by :	Q17	भारत्म	ोन को किमके त्यम जैव आपणनित किया जा मकता है ?
	(1)	Avena coleoptile curvature	07.	জাপতা ক	
	(2)	Hydroponics		<b>(1</b> )	एवाना प्राकुर चाल के वक्रण स
	(3)	Potometer		(2)	जलसवधन स
	(4)	Lettuce hypocotyl elongation		(3)	पाटामाटर स
				(4)	लेट्यूस बोजपत्राधार के लम्बन स
88.	Satel	lite DNA is important because it :	88.	अनुषंग	गी DNA महत्वपूर्ण होता है क्योंकि यह :
	(1)	codes for proteins needed in cell cycle.		(1)	उन प्रोटीनों के लिए कोडन करता है जिनकी कोशिका -
	(2)	shows high degree of polymorphism in			चक्र के लिए जरूरत होती है।
	•	polymorphism in an individual, which is heritable from parents to children.		JX	समष्टि में उच्च कोटि की बहुरूपता और साथ ही एक व्यक्ति में उतनी ही कोटि की बहुरूपता प्रदर्शित करता
. •	(3)	does not code for proteins and is same in all members of the population.			है जिसकी वंशागति जनकों से बच्चों तक हो सकती है।
	(4)	codes for enzymes needed for DNA replication		(3)	प्राटाना के लिए काइन नहां करता, आर समाष्ट क सभी सदस्यों में ऐसा ही होता है।
				(4)	उन एंजाइमों के लिए कोडन करता है जिनकी DNA के पतिकतीयन के लिए जरूरत होती है।
89.	Cellu	llar organelles with membranes are :			
	(1)	nuclei, ribosomes and mitochondria	89.	झिल्ल	ीयुक्त कोशिकीय अंगक है :
	(2)	chromosomes, ribosomes and endoplasmic reticulum		(1)	केन्द्रक, राइबोसोम और माइटोकॉन्ड्रिया
	(3)	endonlasmic reticulum ribosomes and nuclei	•	(2)	गुणसूत्र, राइबोसोम और एंडोप्लास्मिक रेटिकुलम
	(4)	lysosomes Colgi apparatus and		(3)	एंडोप्लास्मिक रेटिकुलम, राइबोसोम और केन्द्रक
	(*)	mitochondria		(4)	लायसोसोम, गॉल्जी उपकरण और माइटोकॉन्ड्रिया
90.	Eutr fishe	ophication of water bodies leading to killing of s is mainly due to non-availability of :	90.	जलीय लगती	ग निकायों का यूट्रोफिकेशन जिसके कारण मछलियाँ मरने । हैं, किसकी उपलब्धता न होने के कारण होता है ?
	(1)	food		(1)	भोजन
	(2)	light		(2)	प्रकाश
	(3)	essential minerals		(3)	आवश्यक खनिज़
	(4)	oxygen		(4)	ऑक्सीजन
			I .		

91.

92.

The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is V, the speed of the ejection of the liquid through the holes is :



Point masses  $m_1$  and  $m_2$  are placed at the opposite ends of a rigid rod of length L, and negligible mass. The rod is to be set rotating about an axis perpendicular to it. The position of point P on this rod through which the axis should pass so that the work required to set the rod rotating with angular velocity  $\omega_0$  is minimum, is given by :

$$m_{1} \xrightarrow{p} m_{2}$$

$$(L-x)$$

$$(1) \qquad x = \frac{m_{1}L}{m_{1} + m_{2}}$$

$$(2) \qquad x = \frac{m_{1}}{m_{2}}L$$

$$(3) \qquad x = \frac{m_{2}}{m_{2}}I$$

(3) 
$$x = \frac{m_1 L}{m_1}$$
  
(4)  $x = \frac{m_2 L}{m_1 + m_2}$ 

93. A proton and an alpha particle both enter a region of uniform magnetic field B, moving at right angles to the field B. If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by proton is 1 MeV, the energy acquired by the alpha particle will be :

- 4 MeV
   0.5 MeV
   1.5 MeV
- (4) 1 MeV

किसी स्प्रे-पम्प की बेलनाकार नली की त्रिज्या R है। इस के सिरे पर n सूक्ष्म छिद्र हैं, जिनमें प्रत्येक की त्रिज्या यदि, नली में द्रव की चाल V है तो, इन छिद्रों से बाहर निव् हुए द्रव की चाल होगी :

S

(1) 
$$\frac{VR^2}{n^2r^2}$$
  
(2) 
$$\frac{VR^2}{nr^2}$$
  
(3) 
$$\frac{VR^2}{n^3r^2}$$
  
(4) 
$$\frac{V^2R}{nr}$$

किसी दृढ़ छड़ को लम्बाई L है और इसका द्रव्यमान नगण्य इसके दो विपरीत सिरों पर क्रमश: m₁ तथा m₂ द्रव्यमान के बिन्दु-पिंड रखे गये हैं। इस छड़ को उसके स्वयं के लम्ब् अक्ष के परित: घूर्णन कराना है, जो छड़ पर स्थित किसी बिन से होकर गुज़रती है (आरेख देखिये)। तो, बिन्दु P की स्थिति जिसके लिये छड़ को कोणीय वेग ω₀ से घूर्णन कराने लिये आवश्यक कार्य न्यूनतम होगा, है :



एक प्रोटॉन तथा एक ऐल्फ़ा कण, किसी एक समान चुम्बकी क्षेत्र B के प्रदेश में प्रवेश करते हैं। इनकी गति की दिशा क्षेत्र के लम्बवत् है। यदि, दोनों कणों के लिये, वृत्ताकार कक्षाओं व त्रिज्या आपस में बराबर है और प्रोटॉन द्वारा अर्जित गतिज ऊज 1 MeV है तो, ऐल्फ़ा कण द्वारा अर्जित ऊर्जा होगी :

- 4 MeV
   0.5 MeV
- (3) 1.5 MeV
- (4) 1 MeV
  - r 11v

93.

92.

SCO SCO

94.

इस नली ज्या r है। [निकलते

गण्य है। न के दो

तम्बवत

बिन्दु P

की वह

ंराने के

कीय

B F

ों की

ऊर्जा

A plank with a box on it at one end is gradually raised about the other end. As the angle of inclination with the horizontal reaches 30°, the box starts to slip and slides 4.0 m down the plank in 4.0 s. The coefficients of static and kinetic friction between the box and the plank will be, respectively:

19

94.

95.



- 0.6 and 0.6 (1)
- 0.6 and 0.5 (2)
- 0.5 and 0.6 (3)
- 0.4 and 0.3 (4)

95. An ideal gas is compressed to half its initial volume by means of several processes. Which of the process results in the maximum work done on the gas?

- (1)Adiabatic
- (2)Isobaric
- (3)Isochoric
- (4)Isothermal

96. A ball is thrown vertically downwards from a height of 20 m with an initial velocity  $v_0$ . It collides with the ground, loses 50 percent of its energy in collision and rebounds to the same height. The initial velocity  $v_0$  is : (Take g = 10 ms⁻²)

- $14 \text{ ms}^{-1}$ (1)
- 20 ms⁻¹ (2)
- (3)  $28 \text{ ms}^{-1}$
- $10 \text{ ms}^{-1}$ (4)

97. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is :

- (1)(2)
  - (4)

किसी तख्ते के एक सिरे पर एक बक्सा रखा है। तख्ते के उस सिरे को धीरे-धीरे ऊपर की ओर उठाया जाता है। तख्ते के क्षैतिज से 30° कोण बनाने पर, बक्सा नीचे की ओर फिसलना प्रारंभ करता है और 4.0 s में 4.0 m दुरी तय कर लेता है। तो, बक्से तथा तख्ते के बीच स्थैतिक तथा गतिक घर्षण गणांकों का क्रमशः मान होगाः

В

40 - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	mg et	1 - (U), W + - 403 2015 16 2 W - 4-51 7 24-51 7 24-517
(1)	0.6 तथा 0.6	In the second
<b>(</b> 2)	0.6 तथा 0.5	
(3)	0.5 तथा 0.6	
(4)	0.4 तथा 0.3	

- किसी आदर्श गैस को कई प्रक्रमों द्वारा, इसके प्रारंभिक आयतन के आधे आयतन तक संपीडित किया जाता है। किस प्रक्रम में गैस पर अधिकतम कार्य करना होगा?
  - रुद्धोष्म में (1)
- रागदानी में (A)
- समआयतनिक में (3)
- समतापी में (4)
- एक गोला 20 m की ऊँचाई से, प्रारंभिक वेग  $v_0$  द्वारा सीधे 96. (ऊर्ध्वाधर) नीचे की ओर फेंका जाता है। यह गोला भू-तल से टकराता है, इस टक्कर में इसकी 50% ऊर्जा क्षयित हो जाती है। भू-तल से टकराने के बाद यह गोला उसी ऊँचाई तक उछल आता है। यदि g = 10 ms  $^{-2}$  है तो, गोला का प्रारंभिक वेग है :
  - $14 \text{ ms}^{-1}$ (1)
  - (2)  $20 \text{ ms}^{-1}$
  - 28 ms⁻¹ (3)

(1)

(2)

(3)

(4)  $10 \text{ ms}^{-1}$ 

5

हाइड्रोजन के स्पेक्ट्रम में, लाइमन तथा बामर श्रेणियों की दीर्घतम 97. ( min - me तरंगदैर्घ्यों का अनुपात होता है :

1-2 (1 1-2 (1 1-1 1-2 1-1

scol 20 98. A source of sound S emitting waves of frequency 98. 100 Hz आवृत्ति की ध्वनि उत्पन्न करता हुआ एक ध्वनि स्रोत S, 📭 100 Hz and an observer O are located at some तथा एक प्रेक्षक O, एक दूसरे से कुछ दूरी पर स्थित हैं। यह distance from each other. The source is moving with ध्वनि स्रोत,  $19.4 \text{ ms}^{-1}$  की चाल से चल रहा है। उसके a speed of  $19.4 \text{ ms}^{-1}$  at an angle of  $60^{\circ}$  with the चलने की दिशा, स्रोत तथा प्रेक्षक की स्थितियों को मिलाने source observer line as shown in the figure. The observer is at rest. The apparent frequency observed वाली सरलरेखा से 60° का कोण बनाती है (आरेख देखिये)। by the observer (velocity of sound in air  $330 \text{ ms}^{-1}$ ), यदि, प्रेक्षक अपनी स्थिति पर ही रुका रहता है तो, प्रेक्षक द्वारा is : सुनी गई ध्वनि की आभासी आवृत्ति (हवा में ध्वनि का वेग 330 ms⁻¹) होगी : <u> </u>60° Ò 60 100 Hz (1)Ò 103 Hz (2)(1)100 Hz (3)106 Hz (2)103 Hz (4)97 Hz 106 Hz (3).99. If dimensions of critical velocity  $v_c$  of a liquid (4)97 Hz flowing through a tube are expressed as  $[\eta^x \rho^y r^z]$ , किसी नलिका से बहने वाले द्रव के क्रांतिक वेग, v_c की, 99. where  $\eta$ ,  $\rho$  and r are the coefficient of viscosity of विमाओं को, [η^x ρ^y r^z] से निर्दिष्ट किया जाता है, जहाँ η, ρ liquid, density of liquid and radius of the tube respectively, then the values of *x*, *y* and *z* are given तथा r क्रमशः द्रव का श्यानता गुणांक, द्रव का घनत्व तथा by: नलिका की त्रिज्या हैं। तो, x, y तथा z का क्रमश: मान है : (1) 1, -1, -11, -1, -1 (1) -1, -1, 1(2)-1, -1, 1(2)(3) -1, -1, -1 (3) -1, -1, -1(4)1, 1, 1 (4) 1, 1, 1 100. 4.0 g of a gas occupies 22.4 litres at NTP. The specific सामान्य-ताप तथा दाब पर, किसी गैस के 4.0 g द्रव्यमान का 100. heat capacity of the gas at constant volume आयतन 22.4 लिटर है। स्थिर-आयतन पर इसकी विशिष्टis 5.0 JK  $^{-1}$  mol  $^{-1}$ . If the speed of sound in this gas ऊष्मा-धारिता 5.0 JK-1 mol-1 है। यदि, इस गैस में, at NTP is 952 ms⁻¹, then the heat capacity at constant pressure is सामान्य-ताप व दाब पर, ध्वनि का वेग 952 ms⁻¹ है तो, इस (Take gas constant  $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$ ) गैस की, स्थिर दाब पर विशिष्ट ऊष्मा धारिता है : 8.0 JK⁻¹ mol⁻¹ (1)  $\begin{array}{l} (R = 8.3 \, \mathrm{JK}^{-1} \, \mathrm{mol}^{-1}) \\ (1) \quad 8.0 \, \mathrm{JK}^{-1} \, \mathrm{mol}^{-1} \end{array}$ (2)7.5 JK⁻¹ mol⁻¹ 7.0 JK⁻¹ mol⁻¹ (3) (2)7.5 JK⁻¹ mol⁻¹ 8.5 JK⁻¹ mol⁻¹ 7.0 JK⁻¹ mol⁻¹ (4)(3) 8.5 JK⁻¹ mol⁻¹ (4)101. If vectors  $\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$  and 101. यदि सदिश  $\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$  तथा सदिश  $\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$  are functions of time,  $\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$  समय के फलन हैं, तो, 't' का then the value of t at which they are orthogonal to वह मान क्या होगा, जिस पर ये सदिश परस्पर लबकोणिक each other is : होंगे ? (1) (1)(2)(2) (3)(3) (4)t = 0t = 0(4)

03.

04.

105.

scol 21 नि स्रोत S, b2. In the given figure, a diode D is connected to an यहाँ परिपथ में, एक डायोड 1) को एक बाह्य प्रतिरोध, 102. त हैं। यह external resistance  $R = 100 \Omega$  and an e.m.f. of 3.5 V. R = 100 Ω तथा 3.5 V ई.एम.एफ. की बैटरी से जोड़ा गया है। If the barrier potential developed across the diode is । उसके यदि डायोड में (दोनों क्षेत्रों की संधि के आरपार) उत्पन्न रोधिका 0.5 V, the current in the circuit will be : हो मिलाने विभव 0.5 V है तो. परिपथ में धारा होगी :  $100 \Omega$ देखिये)।  $\sim \sim \sim$ D  $100 \Omega$ 52 3°= क्षिक द्वारा R ने का वेग -|1|F 3.5 V 3.5 V 30 mA (1)30 mA 40 mA (2)40 mA (2)(3) 20 mA 20 mA (3)35 mA (4)35 mA (4)03. If potential (in volts) in a region is expressed as यदि किसी क्षेत्र में विभव (वोल्ट में) को. 103. V(x, y, z) = 6xy - y + 2yz, the electric field (in N/C) V(x, y, z) = 6xy - y + 2yz, से निर्दिष्ट किया जाय तो, बिन्दु at point (1, 1, 0) is : (1, 1, 0) पर विद्युत क्षेत्र (N/C में) है : _{vc} की,  $-(3\hat{i}+5\hat{j}+3\hat{k})$ V2 dE (1) ाहाँ η, ρ (1)  $-(3\hat{i}+5\hat{j}+3\hat{k})$ 247 VB z 69-1423 -142 (2)  $-(\hat{6i} + 5\hat{i} + 2\hat{k})$ त्व तथा (2)  $-(6\hat{i} + 5\hat{j} + 2\hat{k})$ न है: (3)  $-(2\hat{i}+3\hat{j}+\hat{k})$ (3)  $-\left(2\hat{i}+3\hat{j}+\hat{k}\right)$  $-(\hat{6i} + \hat{9i} + \hat{k})$ (4) (4)  $-(\hat{6i} + \hat{9i} + \hat{k})$ मान का 04. A remote - sensing satellite of earth revolves in a एक सुदूर-संवेदी उपग्रह, पृथ्वी के पृष्ठ से 0.25×106 m circular orbit at a height of  $0.25 \times 10^6$  m above the য়য়িচ্ছ-104. surface of earth. If earth's radius is  $6.38 \times 10^6$  m ऊँचाई पर, वृत्ताकार कक्षा में पृथ्वी का चक्कर लगा रहा है। गैस में. and  $g = 9.8 \text{ ms}^{-2}$ , then the orbital speed of the यदि, पृथ्वी की त्रिज्या  $6.38 \times 10^6$  m है और g = 9.8 ms⁻²  $L_{\bullet}$ तो. इस satellite is : है तो, उपग्रह को कक्षीय चाल होगी : (1) $7.76 \, \text{km s}^{-1}$ V2 J2972 14 12 J2972 14 V2 Jum  $7.76 \text{ km s}^{-1}$ (1) 8.56 km s⁻¹ (2)8.56 km s⁻¹ (2) $9.13 \text{ km s}^{-1}$ (3)  $9.13 \, \text{km} \, \text{s}^{-1}$ (3) (4)  $6.67 \text{ km s}^{-1}$  $6.67 \, \mathrm{km \, s^{-1}}$ (4) 105. Two metal wires of identical dimensions are सर्वसम विस्तार (माप) के धातु के दो तार श्रेणी क्रम में जुड़े हैं। 105. connected in series. If  $\sigma_1$  and  $\sigma_2$  are the यदि इन तारों की चालकता क्रमश: σ1 तथा σ2 है तो, इनके इस conductivities of the metal wires respectively, the 't' का effective conductivity of the combination is: संयोजन की चालकता होगी : <u>जेणिक</u>  $2\sigma_1\sigma_2$ (1)  $\sigma_1 + \sigma_2$  $\frac{\sigma_1 + \sigma_2}{2 \sigma_1 \sigma_2}$  $\sigma_1 + \sigma_2$ (2) <u>2 σ1</u> σ2 (2)  $\sigma_1 + \sigma_2$  $\frac{\sigma_1 + \sigma_2}{\sigma_1 \sigma_2}$ (3) (3)  $\sigma_1 \sigma_2$ (4)(4)

-1 = 1 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2

B

106. A satellite *S* is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then,

- the angular momentum of *S* about the centre (1)of the earth changes in direction, but its magnitude remains constant.
- the total mechanical energy of S varies (2)periodically with time.
- the linear momentum of S remains constant (3)in magnitude.
- the acceleration of S is always directed (4)towards the centre of the earth.

Two particles A and B, move with constant velocities 107.

> $v_1$  and  $v_2$ . At the initial moment their position vectors are  $r_1$  and  $r_2$  respectively. The condition for particles A and B for their collision is :

(1)	$\frac{\overrightarrow{r_1 - r_2}}{\begin{vmatrix} \overrightarrow{r_1} & \overrightarrow{r_2} \end{vmatrix}} = \frac{\overrightarrow{v_2 - v_1}}{\begin{vmatrix} \overrightarrow{v_2} & \overrightarrow{v_1} \end{vmatrix}$
(2)	$\vec{r}_1 \cdot \vec{v}_1 = \vec{r}_2 \cdot \vec{v}_2$
(3)	$\vec{\mathbf{r}}_1 \times \vec{v}_1 = \vec{\mathbf{r}}_2 \times \vec{v}_2$
(4)	$\overrightarrow{r_1}$ $\overrightarrow{r_2}$ $\overrightarrow{v_1}$ $\overrightarrow{v_2}$

108. Two stones of masses m and 2 m are whirled in

horizontal circles, the heavier one in a radius 2 and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when they experience same centripetal forces. The value of n is :

- 2 (1)
- (2)3.
- (3)4
- (4)1

109. A parallel plate air capacitor has capacity 'C', distance of separation between plates is 'd' and potential difference 'V' is applied between the plates. Force of attraction between the plates of the parallel plate air capacitor is :

(1)	$\frac{C^2 V^2}{2 d}$	•		t i s s	in the
(2)	$\frac{CV^2}{2 d}$		•	*	
(3)	$\frac{CV^2}{d}$				(2 (2
(4)	$\frac{C^2 V^2}{2 d^2}$				C

	· · · · · · · · · · · · · · · · · · ·		
106.	एक उपग्रह S, दीर्घवृत्तीय कक्षा में पृथ्वी की परिक्रमा कर	Th	
	है। उपग्रह का द्रव्यमान, पृथ्वी के द्रव्यमान की तुलना में ब	tin	r
	कम है। तो :		
	()> पृथ्वी के केन्द्र के परित:, S के कोणीय संवेग की दि	Ŕ	
ب	में परिवर्तन होता रहता है, किन्तु, इसका परिमाण सम	W	
	रहता है।	d€	2
	(2) ८ की कल यांत्रिक ऊर्जा का मान समय के साथ आवे	re	:
	रूप में परिवर्तित होती रहती है।	1 <b>S</b>	
· .	(3) S के रेखीय संवेग का परिमाण (मान) स्थिर रहता है	(1	
· ·	(4) S का त्वरण सदैव पृथ्वी के केन्द्र की ओर होगा।	(2	)
107.	दो कण A तथा B स्थिर वेग क्रमशः $\overrightarrow{v_1}$ तथा $\overrightarrow{v_2}$ से गति कर	ľ	2
	हैं। प्रारंभिक क्षण में उनके स्थिति सदिश क्रमश: न तथा क	(.	2
· .	हैं। तो 🔥 तशा प्र के संघट होने के लिये प्रतिबंध है कि		٨
	פו או, א אמשע די אמשע פוש א	. (	J
	$\vec{r_1} - \vec{r_2}$ $\vec{v_2} - \vec{v_1}$	1. /	۵
	(1) $\overrightarrow{  \rightarrow \rightarrow  } = \overrightarrow{  \rightarrow \rightarrow  }$ $\overrightarrow{  \gamma_2 - \gamma_2  }$	1	7
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	. (	ć
· .	$(2)   r_1 \cdot v_1 = r_2 \cdot v_2$		'n
	(3) $\vec{r_1} \times \vec{v_1} = \vec{r_2} \times \vec{v_2}$		Ċ
	$(4) \qquad \xrightarrow{\rightarrow} \rightarrow \qquad \xrightarrow{\rightarrow} \rightarrow $		C
	$(1)  (1 - t_2 = t_1 - t_2)$		(
100	ਤੀ ਸ਼ੁਆਸੇ ਤੇ ਤੁਹਾਸਤ ਤੁਆ ? ਤੋਂ ਅਸੀਂ ਸ਼ੁਆ ਜਹੇ ¹ ਜਿਹ		(
108.	$\frac{1}{2}$		` 1
	के तथा हल्के पत्थर को r त्रिज्या के वृत्ताकार क्षेतिज पर्थो		Ņ
	घुमाया जाता है। जब ये पत्थर एक समान अभिकेन्द्रीय ब		l
	अनुभव करते हैं तब हल्के पत्थर का रेखीय वेग भारी पत्थर वे	10	
	रेखीय वेग का n गुना है। n का मान है :	61 fer 1	1
	(1) 2		
	(2) 3		1
	(3) 4		
	(4) 1		
ر.109	, एक समान्तर प्लेट वायु संधारित्र की दो पट्टिकाओं के बीच व		
	दरी 'त' तथा इनके बीच विभवान्तर 'V' है। यदि इस संधारि	1	

की धारिता 'C' है तो, इसकी पट्टिकाओं के बीच आकर्षण बत

(1)2.d  $CV^2$ (2) 2 d (3) $2 d^2$ 

होगा :

13.

v (i n) C

S⊈O

SQ	0	23	3	В
क्रमा कर तुलना में ब ⁽⁾	ı.	The position vector of a particle $\overrightarrow{R}$ as a function of time is given by :	110.	समय के फलन के रूप में किसी कण का स्थिति सदिश Rे दिया गया है :
विंग की दि		$\vec{R} = 4 \sin(2\pi t) \hat{i} + 4 \cos(2\pi t) \hat{j}$		$\vec{R} = 4 \sin(2\pi t) \hat{i} + 4 \cos(2\pi t) \hat{j}$
ारिमाण सम् . साथ आव		Where R is in meters, t is in seconds and $\hat{i}$ and $\hat{j}$ denote unit vectors along x-and y-directions, respectively. Which one of the following statements is <b>wrong</b> for the motion of particle ?		जहाँ, R मीटर में तथा t सेकंड में है और $\hat{i}$ तथा $\hat{j}$ क्रमश: x-तथा y-दिशाओं के अनुदिश एकांक सदिश हैं। इस कण की गति के लिये निम्नांकित में से कौन-सा कथन सही <b>नहीं</b> है ?
श्वर रहता		(1) Acceleration vector is along $-\overrightarrow{R}$ .		(1) त्वरण-सदिश, $-\vec{R}$ के अनुदिश है।
ं होगा।		(2) Magnitude of acceleration vector is $\frac{v^2}{R}$ , where <i>v</i> is the velocity of particle.		(2) त्वरण-सदिश का परिमाण, — है, जहाँ, v कण का वेग है।
गित कर  11_ तथा ह	·	<ul><li>(3) Magnitude of the velocity of particle is 8 meter/second</li></ul>		(3) कण के वेग का परिमाण 8 m/s है। (4) कण का पथ 4 m त्रिज्या का वन्त है।
'कि:		(4) Path of the particle is a circle of radius 4 meter.	111	(4) पर्या ने 4 मा निर्णय के सी पत्यावर्ती वोल्टना के स्रोन से जहा
	1:	A series R-C circuit is connected to an alternating voltage source. Consider two situations :	111.	है। दो स्थितियों (a) तथा (b) पर विचार कीजिये :
		(a) When capacitor is air filled.		(a) जब, संधारित्र वायु संपूरित (भरा) है।
		(b) When capacitor is mica filled.		(b) जब, संधारित्र माइका संपूरित है।
		Current through resistor is $i$ and voltage across capacitor is V then :		इस परिपथ में प्रतिरोधक से प्रवाहित विद्युत धारा i है तथा संधारित्र के सिरों के बीच विभवान्तर V है, तो :
		(1) $V_a < V_b$	 1   .	(1) $V_a < V_b$
<u>r</u> — त्रिज्स		(2) $V_a > V_b$		$(2)  V_a > V_b$
2 ज पथों 1		(3) $i_{a} > i_{b}$	}	$\begin{array}{ccc} (3) & i_{a} > i_{b} \\ (6) & y & y \end{array}$
न्द्रीय बर		$(4)  V_a = V_b$		$(4)  v_a = v_b$
ो पत्थर है	2.	A string is stretched between fixed points separated by 75.0 cm. It is observed to have resonant frequencies of 420 Hz and 315 Hz. There are no other resonant frequencies between these two. The lowest resonant frequency for this string is :	112.	एक डोरी दो स्थिर बिन्दुओं के बीच खिची है। इन बिन्दुओं के बीच की दूरी 75.0 cm है। इस डोरी की दो अनुनाद-आवृत्तियाँ 420 Hz तथा 315 Hz हैं। इन दोनों के बीच में कोई अन्य अनुनाद-आवृत्ति नहीं है। तो, इस डोरी के लिये न्यूनतम अननाद-आवत्ति है:
		(1) 155 Hz	}	(1) 155 Hz 470
बीच क		(2) 205 Hz	· 	(2) 205 Hz
संधारि		(3) 10.5 Hz		(3) 10.5 Hz
,र्षण बल		(4) 105 Hz		(4) 105 Hz
	3.	The coefficient of performance of a refrigerator is 5. If the temperature inside freezer is $-20^{\circ}$ C, the temperature of the surroundings to which it rejects heat is : (1) $31^{\circ}$ C	113.	किसी प्रशीतक (रेफ़्रिजरेटर) का निष्पादन गुणांक 5 है। यदि फ्रीजर (प्रशीतित्र) का भीतरी ताप $-20^{\circ}$ है तो प्रशीतक के $273^{\circ}$ बाहर चारों ओर जहाँ यह ताप बाहर फेंकता है का तापमान $233^{\circ}$ होगा :
		(2) 41°C		$(2)$ $41^{\circ}$ $(2)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $($
		(3) 11°C		(3) $11^{\circ}$ C $-2$ $72$ $71$ $71$
		(4) 21°C		(4) 21°C 5° TI-72 6° TI
	. * *		• • •	7,2

in:

Sheekkon tayte saadaanaa

116. 115. 114. Two slits in Youngs experiment have widths in the æ 3 3 Ξ ratio 1:25. The ratio of intensity at the maxima and minima in the interference pattern, <u>'max</u> is : 4 In an astronomical telescope in normal adjustment 3 ত Ξ magnification of the telescope is : image of this line. The length of this image is I. The a straight black line of length L is drawn on inside part of objective lens. The eye-piece forms a real Ð ය 3 Э (h = Planck's constant, c = speed of light) material is : photoelectrons in the second case is 3 times that in the maximum kinetic energy of the emitted by monochromatic light of wavelength  $\lambda$  and  $\frac{\lambda}{2}$  . If A photoelectric surface is illuminated successively the first case, the work function of the surface of the 49 121 ŀ L + 1  $\frac{2}{h}$  $\frac{hc}{3\lambda}$ >15  $\frac{2}{\lambda}$ ł + Hinto Imin EF. 24 116 115. 114. यंग के किसी द्विसिरी प्रयोग में, दो झिरियों की चें ड़ाइयों 4 3 2 अनुपात 1 : 25 है। तो, व्यतिकरण पैटर्न में उत्तिषठ तर्थ निम्निष्ठ की तीव्रताओं का अनुपात, ¹max</sup> होगा : 4 ම િ Э प्रतिबिम्ब बनाती है। इस प्रतिबिम्ब की लम्बाई I है ते।, दूरदर सामान्य समायोजन की स्थिति में, किसी खगोलीय रूरदर्शक হি का आवर्धन हैं: सरल रेखा खींची गई है। नेत्रिका इस सरल रेखा का वास्तर्गि अभिदृश्यक लेंस के भीतरी भाग पर, L लम्बाई की एक का Ð ف किसी प्रकाश वैद्युत पृष्ठ को, क्रमशः  $\lambda$  तथा  $\frac{\lambda}{2}$  तरंगदेव्य एकवर्णी.प्रकाश से प्रदीप्त किया जाता है। यदि उत्सी 2 का कार्य फलन हे : (h = प्लांक स्थिराक, c = प्रक श का दूसरी दशा में, पहली दशा से 3 गुना है तो, इस पृन्ठ के प्रकाश विद्युत इलेक्ट्रॉनों की अधिकतम गतिज उर्जा का 121 <u>121</u> 49 -10 Ľ + I 3 h  $\frac{2}{hc}$ Ъ  $\frac{1}{2}$ ~ 1 + SdSCO 1 18 118 Ш7. in dia ta Two vessels separately contain two ideal gases A Ð ය (2)Э 4 4 ම (2)a resistance 40.8 ohm all connected in series. If the A circuit contains an ammeter, a battery of 30 V and æ ය 3 Ξ being twice that of B. Under such conditions, the and B at the same temperature, the pressure of A  $13.6 \times 10^3$  kg/m³ and g = 10 m/s² then the power of the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be The heart of a man pumps 5 litres of blood through 2 Э the density of glycerin for a rise of 40°C in its glycerin is  $5 \times 10^{-4}$  K⁻¹. The fractional change in The value of coefficient of volume expansion of Ξ density of A is found to be 1.5 times the density of B. ය temperature, is : of 20 ohm, the reading in the ammeter will be : ammeter has a coil of resistance 480 ohm and a shunt heart in watt is : The ratio of molecular weight of A and B is : 0.015 .1.50 0.020 0.25 A 0.<u>5</u> A 3.0 2.35 1.70 0.010 0.025 1 A 2 A 25 117. 120. 119. 118. किसी व्यक्ति का हृदय, धमनियों से 150 mm पारद दाब पर, किसी परिपथ में, 30 V की एक बैटरी, 40.8 ओम का एक एक समान तापमान पर दो पात्रों में से एक में आदर्श गैस A तथा **(**<u>4</u>) 3 Ξ  $13.6 imes 10^3 \, \mathrm{kg/\,m^3}$  तथा  $\mathrm{g}$  = 10  $\,\mathrm{m/\,s^2}$  हैं तो, हृदय की शक्ति 5 लिटर रक्त प्रति मिनट पम्प करता है। यदि, पारद का घनत्व 4 Ξ ग्लिसरीन का आयतन प्रसार गुणांक 5×10-4 K-1 है। तब Æ 3 का अनुपात होगा : का दो गुना है। इन दशाओं के अन्तर्गत, गैस A का घनत्व, गैस 2 वाट में है : ම 3 ग्लिसरीन के तापक्रम में 40°C वृद्धि करने पर उसके घनत्व में ම ß Ξ का प्रतिरोघ 20 Ω है तो, एमीटर का पाठ्यांक होगा : एमीटर की कुंडली का प्रतिरोध 480 Ω है और इससे जुड़े शंट থি Э B के घनत्व से 1.5 गुना पाया जाता है, तो, A तथा B के अणुभारो आशिक परिवर्तन होगा : प्रतिरोध तथा एक एमीटर, सभी श्रेणी क्रम में जुड़े हैं। यदि € दूसरे में आदर्श गैस B भरी हैं। गैंस ∧ का दाब, गैस B के दाब 1.70 0.0200.015 0.25 A 0.5 A 2.35 0.010 0.0253.0 1 A 2 A 1:50 ford a Copper c d 4 8

В SCO 26 SCO 27 121. A beam of light consisting of red, green and blue एक प्रकाश किरणपुंज, लाल, हरे तथा नीले रंगों से बना है। यह 121. विरामावस्था में युरेनियम का एक नाभिक, थोरियम तथा होलियम 124. A nucleus of uranium decays at rest into nuclei of 124. colours is incident on a right angled prism. The किरणपंज किसी समकोणी प्रिज्म पर आपतित होता है ( आरेख thorium and helium. Then: के नाभिकों में क्षयित होता है। तो : refractive index of the material of the prism for the देखिये)। प्रिज्म के पदार्थ का अपवर्तनांक, लाह, हरे व नीले above red, green and blue wavelengths are 1.39, 1.44 The helium nucleus has more kinetic energy होलियम-नाभिक की गतिज ऊर्जा, थोरियम-नाभिक से (1)(1)and 1.47, respectively. रंग के लिये क्रमश: 1.39, 1.44 तथा 1.47 हैं। तो, than the thorium nucleus. अधिक होती है। The helium nucleus has less momentum than (2)हीलियम-नाभिक का संवेग, थोरियम-नाभिक से कम  $(2)^{-1}$ the thorium nucleus. Blue होता है। The helium nucleus has more momentum (3)Green हर हीलियम-नाभिक का संवेग, थोरियम-नाभिक से अधिक Red than the thorium nucleus. (3) होता है। The helium nucleus has less kinetic energy (4) than the thorium nucleus. होलियम-नाभिक की गतिज ऊर्जा, थोरियम-नाभिक से (4) यह प्रिज्म : The prism will : कम होती है। किरणपुंज के नीले रंग भाग को अन्य रंगों ने पृथक कर separate the blue colour part from the red and (1) (1)125. A force  $\vec{F} = \alpha \hat{i} + 3 \hat{j} + 6 \hat{k}$  is acting at a point green colours देगा । 125. किसी बिन्द,  $\vec{r} = 2\hat{i} - 6\hat{j} - 12\hat{k}$ , पर एक बल  $\vec{r} = 2\hat{i} - 6\hat{j} - 12\hat{k}$ . The value of  $\alpha$  for which separate all the three colours from one another (2)किरणपुंज के तीनों रंगों को एक दूसरे से पृथक कर देगा। (2) $\vec{F} = \alpha \hat{i} + 3 \hat{i} + 6 \hat{k}$  लग रहा है। तो, ' $\alpha$ ' के किस मान के angular momentum about origin is conserved is : not separate the three colours at all (3) तीनों रंगों को बिल्कुल भी पृथक नहीं करेगा। लिये मूल बिन्दू के परितः कोणीय संवेग संरक्षित रहेगा? (3)(1)-1 separate the red colour part from the green (4) किरणपुंज के लाल रंग भाग को अन्य रंगों से पथक कर (4) (1)and blue colours देगा । (2)(3) zero 122. A rectangular coil of length 0.12 m and width 0.1 m (3)হান্থ 122.) एक 0.12 m लम्बी, 0.1 m चौडी कंडली में तार के 50 फेरे हैं। (4) 1 having 50 turns of wire is suspended vertically in a इसको 0.2 Weber/m² के एकसमान चुम्बकीय क्षेत्र में ऊर्ध्वाधर (4) uniform magnetic field of strength 0.2 Weber/m². लटकाया गया है। कुडली में 2 A विद्युतधारा प्रवा हेत हो रही 📲 26. The coil carries a current of 2 A. If the plane of the  $\theta u_{H}$ Water rises to a height 'h' in capillary tube. If the किसी केशिका में जल 'h' ऊँचाई तक चढता है। यदि, जल की coil is inclined at an angle of 30° with the direction 126. है। यदि कंडली, चम्बकीय क्षेत्र से 30° कोण बनाती है तो, इसे length of capillary tube above the surface of water is of the field, the torque required to keep the coil in सतह से ऊपर केशिका की लम्बाई 'h' से कम हो तो ; made less than 'h', then ; रोके रखने के लिये आवश्यक बल आघूर्ण का मान होगा : stable equilibrium will be: जल केशिका के ऊपरी सिरे तक चढ़कर, फ़व्वारे के रूप water rises upto the tip of capillary tube and (1)(1)0.15 Nm (1)(1)0.15 Nm LYA20+ then starts overflowing like a fountain. में बाहर बहने लगता है। . (Z) 0.20 Nm 0.20 Nm water rises upto the top of capillary tube and जल केशिका के ऊपरी सिरे तक चढ़ जाता है, वहीं रुका 0.24 Nm (2)(3) (3) stays there without overflowing. 0.24 Nm रहता है बाहर नहीं बहता। 0.12 Nm (4)(4) 0.12 Nm water rises upto a point a little below the top (3) जल केशिका के ऊपरी सिरे से कुछ नीचे तक चढता है (3) 123. एक इलेक्टॉन, सरल रेखीय पथ, XY पर गतिमान है। एक and stays there. और वहीं बना रहता है। कंडली abcd इस इलेक्टॉन के मार्ग के निकटवर्ती हैं ( आरेख 123. An electron moves on a straight line path XY as water does not rise at all. (4)shown. The abcd is a coil adjacent to the path of जल केशिका में नहीं चढता देखिये)। तो, इस कडली में प्रेरित धारा (यदि कोई हा तो) की (4)electron. What will be the direction of current, if 🐼 🗥 दिशा क्या होगी? N7 60 7 .27 18 A particle is executing a simple harmonic motion. any, induced in the coil ? 127. सरल आवर्त गति करते हुए किसी कण का अधिकतम Its maximum acceleration is a and maximum fet2+53+3.247 त्वरण α तथा अधिकतम वेग β है। तो, इसके कम्पन का velocity is B. Then, its time period of vibration will be: आवर्तकाल होगा : 27 24-38-4-3 (1)Х इलेक्टॉन Х electron abcd दिशा में। (1)(2)(1) abcd adcb दिशा में। (2)(2) adcb (3)इलेक्ट्रॉन के कुंडली के पास से निकल जाने नर धारा (3)The current will reverse its direction as the  ${3}$ की दिशा विपरीत हो जायेगी। electron goes past the coil T2 KITE 2πβ No current induced धार। प्रेरित नहीं होगी। (4) (4)

sco^{jiCO} 29 В 28 A potentiometer wire of length L and a resistance r | 132. L लम्बाई के एक विभवमापी तार तथा एक प्रतिरोध r को, श्रेणी 128. The energy of the em waves is of the order of 15 keV. | 128. किसी विद्युत चुम्बकीय तरंग की ऊर्जा की कोटि 15 keV है 32. are connected in series with a battery of e.m.f. E0 क्रम में. E,ई.एम.एफ. की एक बैटरी तथा प्रतिरोध r, से जोड़ा To which part of the spectrum does it belong? यह स्पैक्टम के किस भाग का सदस्य है? and a resistance r1. An unknown e.m.f. E is balanced गया है। इस विभवमापी की ! लम्बाई पर, किसी अज्ञात (1) X - rays at a length l of the potentiometer wire: The e.m.f. E एक्स-किरणें ई.एम.एफ. E के लिये संतुलन बिन्दु प्राप्त होता है। तो, E का (2) will be given by : Infra-red rays No मान है : अंवरक्त किरणें (2)(3) Ultraviolet ravs E2 by M LE₀r पराबेंगनी किरणें (3)(1) (4) γ-rays  $l r_1$ LE₀r (1)l r₁. (4) गामा किरणें 129. Light of wavelength 500 nm is incident on a metal (2) with work function 2.28 eV. The de Broglie  $(r + r_1)$ 129. किसी धातु का कार्य फलन 2.28 eV है। इस पर 500 nm wavelength of the emitted electron is : Turyline. तरंगदैर्घ्य का प्रकाश आपतित होता है तो, उत्सर्जित इल क्ट्रॉन की (1)  $< 2.8 \times 10^{-10}$  m E₀. दे-बॉग्ली तरंगदैर्ध्य होगी : (3) Ĩ.  $< 2.8 \times 10^{-9} \,\mathrm{m}$ (2) $< 2.8 \times 10^{-10} \text{ m}$ (1) $\geq 2.8 \times 10^{-9} \text{ m}$ LE₀r  $< 2.8 \times 10^{-9}$  m (2) LE₀r (4)  $\leq 2.8 \times 10^{-12} \text{ m}$  $(r + r_1)!$ (4).(3)  $\geq 2.8 \times 10^{-9} \,\mathrm{m}$  $(r + r_1)/(r_1 + r_2)$  $\leq 2.8 \times 10^{-12} \text{ m}$ (4)130. At the first minimum adjacent to the central The Young's modulus of steel is twice that of brass. maximum of a single-slit diffraction pattern, the स्टील का यंग प्रत्यास्थता गुणाक, पीतल से दो गुना है। एक ही 133 एकल झिरी विवर्तन पैटर्न में, केन्द्रीय उच्चिष्ठ के िकटवर्ती 130: phase difference between the Huygen's wavelet from Two wires of same length and of same area of cross लम्बाई तथा एक ही अनुप्रस्थ काट के दो तारों, एक स्टील का प्रथम निम्निष्ठ पर, झिरी के किनारे तथा उसके मध्य बिन्दु से section, one of steel and another of brass are the edge of the slit and the wavelet from the midpoint तथा एक पीतल का, को एक ही छत से लटकाया जाता है। of the slit is : suspended from the same roof. If we want the lower उत्पन्न हाइगेन्स-तरंगिकाओं के बीच पथान्तर होता है ends of the wires to be at the same level, then the यदि, भार लटकाने पर, दोनों तारों के निचले सिरे एक ही तल weights added to the steel and brass wires must be (1) тadian पर हैं तो स्टील तथा पीतल के तारों से लटकाये भारों का अनुपात (1)रेडियन in the ratio of : होना चाहिये : <u>π</u> 2 (2) radian (2) रेडियन 1:2 (1)(1) 1:2 (3) π radian π रेडियन (3)(2)2:1(2)2:1  $\frac{\pi}{8}$  radian (4) (3) 4:1(4) रेडियन 4:1 (3) (4)1:1 (4) 1:1 131. किसी घर्षणहीन पृष्ठ पर v चाल से चलता हुआ M द्रव्य गन का 131. On a frictionless surface, a block of mass M moving एक ब्लॉक, उसी द्रव्यमान M के विरामावस्था में स्थित एक at speed v collides elastically with another block of The input signal given to a CE amplifier having a 134. किसी CE ( उभयनिष्ठ उत्सर्जक) प्रवर्धक की वोल्टता-लब्धि अन्य ब्लॉक से टकराता है। टक्कर के पश्चात पहला ज्लॉक. same mass M which is initially at rest. After collision No 2150 the first block moves at an angle  $\theta$  to its initial 150 है। इसका निवेश सिग्नल (संकेत), voltage gain of 150 is  $V_i = 2 \cos \left( 15 t + \frac{\pi}{3} \right)$ . The चाल से, अपनी प्रारम्भिक गति की दिशा से 8 कण्ण पर direction and has a speed  $\frac{0}{2}$ . The second block's  $V_{f} = 2\cos\left(15 t + \frac{\pi}{3}\right)$  है, तो, संगत निर्गत सिग्नल होगा : चलने लगता है। तो, टक्कर के पश्चात दूसरे ब्लॉक का चाल corresponding output signal will be: speed after the collision is : होगी : V= YE  $300 \cos \left( 15 t + \frac{\pi}{2} \right)$  $300\cos\left(15t+\frac{\pi}{3}\right)$ 2√2 (1)(1) (1) (1)150 2 Vo 75 cos 15 t +  $75 \cos\left(15 t + \frac{2\pi}{3}\right)$ (2) (2) (2) (2) $2 \cos \left( 15 t + \frac{5 \pi}{4} \right)$  $2\cos\left(15t+\frac{5\pi}{6}\right)$ (3) (3) (d)  $\sqrt{2}$ (3)  $\frac{\sqrt{3}}{2}$  $\frac{\sqrt{3}}{2}$  $300\cos\left(15t+\frac{4\pi}{3}\right)$ (4)  $300 \cos \left( 15 t + \frac{4 \pi}{3} \right)$ (4) ·(4) (4) N.

					NH-CALLO				
					-				
	B	3	30	SCO	^G SCO			31	В
	135.	An automobile moves on a road with a speed of $54 \text{ km h}^{-1}$ . The radius of its wheels is $0.45 \text{ m}$ and the moment of inertia of the wheel about its axis of	135.	एक मोटर वाहन किसी सड़क पर 54 km h ⁻¹ को चाल 'चल रहा है। इसके पहियों की त्रिज्या 0.45 m है और घूर्ण	품 <b>13</b> 9. 17	Whic the p	h of the following reaction(s) can be used for reparation of alkyl halides ?	139.	निम्नलिखित में से कौन सी अभिक्रिया/अभिक्रियाएं ऐल्किल हैलाइड के विरचन में उपयोग में ली जा सकती है?
	· •	rotation is 3 kg m ² . If the vehicle is brought to rest in 15 s, the magnitude of average torque transmitted		अक्ष के परितः पहियं की जड़ल आधूण 3 kg m² है। योव ब्रेक लगाने के वाद, वाहन की रुकने में 15 s का समय लगता	- Carlor	(ſ)	$CH_3CH_2OH + HCl _ anh. ZnCl_2 \rightarrow$	. 	(I) $CH_3CH_2OH + HCI $ $nCl_2 \rightarrow$
		by its brakes to the wheel is :		तो, ब्रेक द्वारा पहिये पर लगा औसत बल अधूर्ण का मा	1	(il)	$CH_3CH_2OH + HCI \longrightarrow$	· ·	(II) $CH_3CH_5OH + HCI \longrightarrow$
		(1) $6.66 \text{ kg m}^2 \text{ s}^{-2}$		हागा :		(11)	$(CH_3)_3COH + HCI \longrightarrow$		
		(2) $8.58 \text{ kg m}^2 \text{ s}^{-2}$	45	(1) $6.66 \text{ kg m}^2 \text{ s}^{-2}$		(IV)	$(CH_3)_2CHOH + HCl _ anh. ZnCl_2 \rightarrow$		
		(3) 10.86 kg m ² s ⁻² $(1 y_1)^{3/2}$	6,	(2) $8.58 \text{ kg m}^2 \text{ s}^{-2}$		(1)	(III) and (IV) only		(IV) $(CH_3)_2CHOH + HCl \xrightarrow{HORTZACL2}$
	• • •	(4) 2.86 kg m ² s ⁻²		(3) $10.86 \text{ kg m}^2 \text{ s}^{-2}$		(2)	(I), (III) and (IV) only		(1) केवल (III) और (IV)
·	10/			(4) 2.60 kg m ² 5 -		(3)	(I) and (II) only		(2) केवल (1), (11) और (IV) <u>c</u> - 04
	136.	not isostructural?	136.	निम्नालोखत युग्मा में से कान सा दाना स्पाशाज समसरचनात्म नहीं हैं ?		(4)	(IV) only		(3) केवल (I) और (II)
		(1) $XeF_4$ , $XeO_4$	J-1. WY	$(\mathcal{Y} \times \mathbf{F}_{4}, \operatorname{Xe} O_{4})$	140.	In an	$\mathrm{S}_{\mathrm{N}}$ 1 reaction on chiral centres, there is :		(4) କବଟ (IV)
· .		(2) SICL POL ⁺ 3+ ² / ⁴	10	$(2)  \text{sich pol}^+$		(1)	100% inversion	140.	काइरल केन्द्र पर S _N 1 अभिक्रिया में होता है :
			9	(2) Sici ₄ , rci ₄		(2)	100% racemization		(1) 100% प्रतिलोमन
		(3) diamond, silicon carbide		(3) हीरा, सिलिकॉन कार्बाइड		(3)	inversion more than retention leading to partial racemization	{ ,	(2) 100% रेसिमीकरण
	• 1,	(4) $\operatorname{NH}_3$ , $\operatorname{PH}_3$		(4) NH ₃ , PH ₃		(4)	100% retention	· ·	(3) धारण से ज्यादा प्रतिलोमन के द्वारा आंशिक रेसिमीकरण
• •	. 137.	Which one of the following esters gets hydrolysed	137	निम्नलिखित में से कौन~सा एस्टर क्षारीय दशा में <i>प्रबसे सरल</i>				· ·	(4) 100% धारण
		most easily under alkaline conditions ?	1,0	से जलअपघटित होता है ?		Whici	h of the following is <b>not</b> the product of		
		OCOCH3 2 Jut 5-1	h tru	С У ОСОСН3		dehyd	dration of OH ?	141.	निम्नलिखित में कौन-सा उत्पाद, 🖉 ार्भ के
		(1) CI 2349477 (1)				•			निर्जलीकरण का नहीं है?
		OCOCH ₃		ОСОСН3	(	(1)			
•		(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)							
	,	0227				(2)			
		(3) OCOCH ₃		(3) OCOCH ₃		(~).	V		(2)
		H ₃ CO		H ₃ CO					
		(1) II OCOCH ₃	Conto	(4) OCOCH ₃		(3)		1	por the second s
							1		
	100		128	फिनॉल की किया क्लोगेफॉम के साथ तन NoO न में करना	(	(4)			(4)
	138.	dilute sodium hydroxide finally introduces which	130.	पर निम्नलिखित में से अंतत: कौन-सा क्रियात्मक समूह लगत	a la				
		one of the following functional group?		है? .	<b>G</b> (	On he	ating which of the following releases $CO_2$	142.	निम्न में से किसको गर्म करने पर CO2 सर्वाधिक आसानी से
-		(1) – CHO		(1) - CHO		nost e	caco		उत्सर्जित होगी ?
		(2) – CH ₂ Cl		(2) $-CH_2Cl$		(2)	CaCO2 KaCO2	L	(1) CaCO ₃
		(3) – COOH		(3) – COOH	1. (	(-) (3)	Na ² CO ₂		(2) $K_2CO_3$ (3) Na CO
		(4) – CHCl ₂		(4) $-CHCl_2$		(4)	MgCO ₃		$(4) \qquad MgCO_2$
· . ·							- · · !		
						• .			

								· · ·
		в	2	ი	a sco	)	33	В
•	• • •	Б 143.	. In the reaction with HCl, an alkene reacts in	2   143. एक एल्कीन HCl से अभिक्रिया करके मारकोनीकॉफ नियम	े. वेरे 148.	What is the pH of the resulting solution when	148. 0.	D 1 M NaOH एवं 0.01 M HCl के समान आयतन को मिश्रित
			product 1-chloro-1-methylcyclohexane. The	अनुसार उत्पाद 1-क्लोरो-1-मेथिलसाइक्लोहेक्सेन देता	हे	are mixed ?	*  क	रने पर बनने वाले बिलयन की pH क्या है?
			possible alkene is :	संभावित एल्कीन है :		(1) 1.04	. (1	1) 1.04
		· .	CH ₂	CH2 We		(2) 12.65	(2	2) 12.65
					i	(3) 2.0	(4	70
	,					(4) 7.0		
			CH.	CH ₃	149.	Decreasing order of stability of $O_2$ , $O_2^+$ , $O_2^+$ and	149. O	$_2$ , $\mathrm{O}_2$ , $\mathrm{O}_2^+$ तथा $\mathrm{O}_2^{2^-}$ के स्थायीत्व का घटता हुआ क्रम
		•		(2) (TB)		$O_2^{2-}$ is:	ह	· · · · · · · · · · · · · · · · · · ·
	. :	-	(2) (B)			(1) $\Omega_{-}^{-} > \Omega_{-}^{2-} > \Omega_{-}^{+} > \Omega_{-}^{+}$	(1)	) $O_2^- > O_2^{2-} > O_2^+ > O_2$
			(3) (A) and (B)	(A) और (B)			(2)	$\int O_{1}^{+} > O_{2} > O_{2}^{-} > O_{2}^{2-}$
				CH ₂		(2) $O_2^+ > O_2^- > O_2^{} > O_2^{2}$		$2^{2-}$ $2^{-}$ $2^{-}$ $2^{+}$
			CH ₃			(3) $O_2^{2-} > O_2^- > O_2^- > O_2^+$	(3)	$O_2^2 > O_2^2 > O_2^2 > O_2^2$
			(4)	(4)		$(4)  0  0^{+}  0^{2-}  -\overline{0}$	(4)	$O_2 > O_2^+ > O_2^{2-} > O_2^{}$
	· · .					(4) $O_2 > O_2 > O_2 > O_2 > O_2$	150 5	
		144.	Number of possible isomers for the complex	144. संकुल $[Co(en)_2^2Cl_2]$ Cl के संभावित समावयवों की अंख		The correct statement regarding defects in crystalline	150. 195	स्टलाय ठासा म दाशा के सम्बंध म सहा कथन हे :
1.1		·	$[Co(en)_2Cl_2]$ Cl will be : (en = ethylenediamine)	होगा : (en = इथिलानडाइएमान)		solids is :	1 st	क्षार धातुंआ के हलाइडों में फ्रेकेल दोष पाया जाता है।
2		•	(1) 4	(1) 4 $(2)$ 2 $(3)$ $(3)$		(1) Frenkel defect is found in halides of alkaline	(2)	क्रिस्टलीय ठौसों के घनत्व पर शॉटकी दोषों का कोई
			(2) 2			(2) Sebettly defects have a final all have	( · · · · ·	प्रभाव नहां होता है।
				(4) 3		of crystalline solids.	(3)	फ्रेकेल दोष क्रिस्टलीय ठोसों के घनत्व को कम कर देते
		· ·	(4) 3	145. एक गैस जैसे कार्बन मोनोक्साइड आदर्श गैस नियम का गल		(3) Frenkel defects decrease the density of		61
	•	145.	A gas such as carbon monoxide would be most likely	सर्वाधिक किस दशा में करेगा?		crystalline solids.	. (4)	फ्रेकेल दोप एक स्थान-भ्रंश दोष है।
· .			to obey the ideal gas law at :	(1) निम्न तापों एवं निम्न दाबों पर		<ol> <li>Frenkel defect is a dislocation defect.</li> </ol>	151. निम्न	रिलिखित में से कौन-सा कथन नाभिकरनेही के लिये सही
		·.	(1) low temperatures and low pressures.	(2) उच्च तापों एवं निम्न दाबों पर		Which of the following statements is <b>not</b> correct for	नहीं	है?
· .			(2) high temperatures and low pressures.	(2) निम्न ताणें एवं उच्च दावों पर		nucleophile?	(1)	नाभिकस्नेही इलेक्टॉन को तलाश में नहीं रहता है।
	· · .	٠.	(3) low temperatures and high pressures.		(	<ol> <li>Nucleophiles are not electron seeking</li> </ol>	(2)-	नाभिकानेही लईम अप्रत है।
	••		(4) high temperatures and high pressures.		(	2) Nucleophile is a Lewis acid	(3)	
		146.	If Avogadro number N _A , is changed from	146. यदि आवोगाद्रो संख्या N _A , 6.022 × 10 ²³ mol ⁻¹ से परिवर्ति		3) Ammonia is a nucleophile	. (0)	
			$6.022 \times 10^{23}$ mol ⁻¹ to $6.022 \times 10^{20}$ mol ⁻¹ , this would change	होकर 6.022×10 ²⁰ mol ⁻¹ होता है, तो इससे पश्चित	(* 1	<ol> <li>Nucleophiles attack low e⁻ density sites</li> </ol>	(4)	नामिकस्नही कम इलक्ट्रीन घनत्व स्थान पर आक्रमण क्यून है।
			(1) the ratio of elements to each other in a	हागा :	T (	he hybridization involved in complex {Ni(CN),12-		
			compound.	(1) योगिक में परस्पर तत्वों का अनुपात।	is is	5: (At. No. Ni = 28)	152. संकुल	त [Ni(CN) ₄ ] ^{2 –} में संकरण है : ( प. सं. Ni=28 )
			(2) the definition of mass in units of grams.	(2) द्रव्यमान को परिभाषा g यूनिट में।	()	d ² sp ³	(1)	d ² sp ³
:		•	(3) the mass of one mole of carbon.	(3) एक मोल कार्बन का द्रव्यमान।	<b>5</b> (2	2) dsp ²	2	dsp ² [2] [7] [70]
			(4) the ratio of chemical species to each other in a	(4) संतुलित समीकरण में परस्पर रासायनिक स्पीशीज व	<b>(3</b>	) sp ³	(3)	sp ³
			balanced equation.	अनुपात।	4	) d ² sp ²	(4)	d ² sp ²
	· .	147.	Gadolinium belongs to 4 <i>f</i> series. It's atomic number	147.) गैडोलिनियम 4/ श्रेणी से संबंधित है। इसकी परमाणु संख्य 6			152 1 2 2	
			is 64. Which of the following is the <b>correct</b> electronic configuration of gadolinium 2	🖉 है। निम्नलिखित में से गैडोलिनियभ का कुत्तिसा स्ही इलेक्ट्रॉनि	ar	ad TI increases in the sequence	133. +13 अनक	गानत्तानगरण अवस्था का स्थायात्व Al, Ga, In एव Tl में म में बटता है
			(1) $[Xe] 4f^{6}5d^{2}6s^{2}$	विन्यास है?	(1	ln < Tl < Ga < Al	പി) പ്രസ്ത്രം പ്രസ്ത്രം	In < Tl < Ca < Δl - Δ
		•	(2) $[Xe] 4f^{8}6d^{2}$	(1) [Xe] $4f^{6}5d^{2}6s^{2}$ (1) en	(2	Ga < ln < Al < T]	(2)	Ga < In < A1 < T1 Al
			(3) $[Xe] 4f^{9}5s^{1}$	$\sqrt{2}$ [Xe] $4f^{8}6d^{2}$ u ^k	(3)	Al < Ga < In < T1	BT	Al < Ga < In < Tl
			(4) [Xe] $4f^{7}5d^{1}6s^{2}$	$ \begin{array}{c} (A)  [Xe] \ 4f^{2}5d^{1}6c^{2} \\ (A)  [Xe] \ 4f^{2}5d^{1}6c^{2} \\ \end{array} $	(4)	T] < ln < Ga < A]	(4)	TI < In < Ga < Al
							. •	~1
	•			24 Jul				

в	•	3	sco	35 B
1	54.	The sum of coordination number and oxidation number of the metal M in the complex $[M(en)_2(C_2O_4)]Cl$ (where <i>en</i> is ethylenediamine) is: (1) 8 (2) 9 (3) 6 (4) 7	54. संकुल $[M(en)_2(C_2O_4)]CI$ (जहाँ en ईथिर्ल नडाइऐमीन है)60.20.0 g of a magnesium carbonate sample decompose on heating to give carbon dioxide and 8.0 magnesium oxide. What will be the percentag purity of magnesium carbonate in the sample ?1811(1)81(2)9 $N-1^2$ (3)6(3)(4)7(4)	$ \begin{array}{c} s \\ 160 \\ 20.0 \\ g \\ 160 \\ 20.0 \\ g \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$
1	55.	Which of the statements given below is incorrect?	55. नीचे दिये कथनों में से कौन-सा गलत है ?	('4) 00 ('प. भार : Mg = 24)
•		<ol> <li>OF₂ is an oxide of fluorine</li> <li>Cl₂O₇ is an anhydride of perchloric acid</li> <li>O₃ molecule is bent</li> <li>ONF is isoelectronic with O₂N⁻</li> </ol>	<ul> <li>(1) OF₂ फ्लोरीन का ऑक्साइड है।</li> <li>(2) Cl₂O₇ परक्लोरीक अम्ल का एनहाइड्राईड है।</li> <li>(3) O₃ अणु मुझ हुआ है।</li> <li>(4) ONF समइलेक्ट्रॉनी है, O₂N⁻ के साध</li> <li>(5) O₃ And Charles and Charle</li></ul>	e 161.) CH ₃ CHOH.COOH की दो संभावित त्रिविम संरचनायें जो कि धुवण घूर्णक हैं, कहलाती हैं : (1) मेसोमर (2) डायास्टिरियोमर
15	56.	In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous	<ul> <li>(3) Atropisomers</li> <li>(4) Enantiomers</li> <li>करने के लिये अंततः क्यूप्रस ऑक्साइड का अपचयन किसचे के लिये के लिये अंततः क्यूप्रस ऑक्साइड का अपचयन किसचे के लिये के लिये अंततः क्यूप्रस आंक्साइड का अपचयन किसचे के लिये के लिय लिये के लिये के लि</li></ul>	<ul> <li>(3) ৫০০৭সাইমান</li> <li>(4) प्रतिबिम्ब रूप</li> <li>(4) ত্বরি নর্ব কেন্দ্র কেন্দ্র কিন্দ্র কেন্দ্র কিন্দ্র কিন্দ্র কিন্দ্র কিন্দ্র কেন্দ্র কিন্দ্র কিন্দ্র কেন্দ্র কিন্দ্র কিন্দ্র কিন্দ্র কেন্দ্র কেন্</li></ul>
		<ul> <li>(1) sulphur dioxide</li> <li>(2) iron(II) sulphide</li> <li>(3) carbon monoxide</li> <li>(4) copper(I) sulphide</li> </ul>	साथ होता है ?The heat of combustion of carbon to CO2 i(1) सल्फर डाईऑक्साइड $-393.5 \text{ kJ/mol.}$ The heat released upon formation(1) सल्फाइड $of 35.2 \text{ g of CO}_2 \text{ from carbon and oxygen gas is :(2) आइरन (II) सल्फाइड(1) -3.15 \text{ kJ}(3) कार्वन मोनोक्साइड(2) -315 \text{ kJ}(4) कॉपर (I) सल्फाइड(3) +315 \text{ kJ}$	$\begin{array}{c} 162. & 6  [a + 1] \\ & -393.5  kJ/mol  \bar{k}    \\ & & 10 \\ & & -315  kJ \\ & & (1) \\ & & -3.15  kJ \\ & & (2) \\ & & -315  kJ \\ & & & (2) \\ & & & -315  kJ \\ & & & & (3) \\ & & & +315  kJ \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & &$
1	57.	<ul> <li>Which one of the following pairs of solution is not an acidic buffer ?</li> <li>(1) H₃PO₄ and Na₃PO₄</li> <li>(2) HClO₄ and NaClO₄</li> </ul>	57. निम्नलिखित बिलयनों के युग्मों में से कौन-स अम्लीय बफ् नहीं है ? (4) - 630  kJ The rate constant of the reaction A → B is $0.6 \times 10^{-1}$ mole per second. If the concentration of A is 5 M then concentration of B after 20 minutes is : (1) 0.72  M	(२) 000 K) 163. अभिक्रिया A → B के लिए वेग स्थिरांक 0.6×10 ⁻³ मोल प्रति सैकण्ड है। यदि A की सान्द्रता 5 M है तो 20 मिनिट पश्चात B की सान्द्रता है: (1) 0.72 M
:		<ul> <li>(3) CH₃COOH and CH₃COONa</li> <li>(4) H₂CO₃ and Na₂CO₃</li> </ul>	(2) $HCIO_4 \forall a NaCIO_4$ (3) $CH_3COOH \forall a CH_3COONa$ (3) $CH_3COOH \forall a CH_3COONa$ (3) $3.60 M$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	58.	Assuming complete ionization, same moles of which of the following compounds will require the <i>least</i> amount of acidified $KMnO_4$ for complete oxidation?	<ul> <li>(4) H₂CO₃ एव Na₂CO₃</li> <li>(4) H₂CO₃ एव Na₂CO₃</li> <li>(4) 0.36 M</li> <li>(58.) पूर्ण आयनीकरण को मानते हुए, निम्नलिखित में से कौन-प्रदे The formation of the oxide ion, O²⁻(g), from oxyger</li> <li>(4) 0.36 M</li> <li>(58.) पूर्ण आयनीकरण को मानते हुए, निम्नलिखित में से कौन-प्रदे atom requires first an exothermic and then ar</li> <li>(4) 0.36 M</li> <li>(58.) पूर्ण आयनीकरण के मानते हुए, निम्नलिखित में से कौन-प्रदे atom requires first an exothermic and then ar</li> <li>(4) 0.36 M</li> <li>(58.) पूर्ण आयनीकरण के मानते हुए, निम्नलिखित में से कौन-प्रदे atom requires first an exothermic and then ar</li> </ul>	164. ऑक्साइड आयन O ²⁻ (g) का आक्सीजन परमाणु से बनने के लिये पहले ऊष्माक्षेपी एवं बाद में ऊष्माशोषी पद नीचे दिये गये हैं:
		<ol> <li>Fe(NO₂)₂</li> <li>FeSO₄</li> <li>FeSO₃</li> </ol>	KMnO ₄ to define the first independent of th	$O(g) + e^- \rightarrow O^-(g) ; \Delta_f H^{\ominus} = -141 \text{ kJ mol}^{-1}$ $O^-(g) + e^- \rightarrow O^{2-}(g) ; \Delta_f H^{\ominus} = + 780 \text{ kJ mol}^{-1}$ गैसीय अवस्था में $O^{2-}$ का बनना प्रतिकृल है यद्यपि $O^{2-}$
1	59.	(4) $FeC_2O_4$ The number of structural isomers possible from the molecular formula $C_2H_2N_1$	(4)       FeC2O4         (4)       FeC2O4         (4)       FeC2O4         (4)       FeC2O4         (5)       अणुसूत्र C3H9N से बनने वाले संभावित संरचनात्मक समाविय की (1)         (4)       addition of electron in oxygen results in larger         (5)       अणुसूत्र C3H9N से बनने वाले संभावित संरचनात्मक समावय की (1)         (1)       addition of electron in oxygen results in larger	(1) ऑक्सीजन में इलेक्ट्रॉन के जोड़ से आयन का आकार (1) ऑक्सीजन में इलेक्ट्रॉन के जोड़ से आयन का आकार बड़ा होता है।
		(1) 3 (2) 4 (3) 5 (2) $4$ (3) 5 (2) $4$ (4)	$\overrightarrow{ah}$ Rieuri $\overrightarrow{b}$ $\overrightarrow{bh}$	<ul> <li>नोबल गैस के विन्यास प्राप्ति के कारण स्थायीत्व से, इलेक्ट्रॉन प्रतिकर्षण प्रभावशाली होता है।</li> <li>(3) O आयन का आकार ऑक्सीजन परमाणु की तुलना में छोटा होता है।</li> </ul>
		(4) 2	(4) oxygen is more electronegative.	(4) आक्साजन ज्यादा वद्युत ऋणात्मक हे। 

•

,

					ł			in
	Ð							for win
	U		50	50	P		37	B B
	165.	What is the mass of the precipitate formed when $50 \text{ mJ}$ of 16.9% solution of ApNO ₂ is mixed with	165,	जब 50 mL, 16.9% AgNO3 के विलयन को 5( mL, 5.1	Meil	od by which Aniline cannot be prepared is :	<b>17</b> 0. कि	विधि से ऐनीलिन को नहीं बनाया जा सकता है? 🛛 🌈
		50 mL of 5.8% NaCl solution ?		NaCl के विलयन के साथ मिश्रित किया जाता है तो बनने व	(1)	potassium salt of phthalimide treated with	1 m	थेलेमाइड के पोटेशियम लवण को क्लोगेबेन्जीन के
		(Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5)	Å Í	अवक्षप का भार क्या हे ?		chlorobenzene followed by hydrolysis with		साथ क्रिया करके. तत्पश्चात NaOH के जलीय विलयन
		(1) 14 g	•	(Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5)				में जल अपघटन द्वारा।
		(2) 28 0 . CONVY +	ن <mark>ا</mark>	(1) 14 g	(4)	solution.	1 122	े फेनिल आदमोमागनाहह का भारतीय लिख्यम में जन्म
• •		(3) 350		(2) 28 g w 28.5 102		degradation of henzamide with broming in	1. 1. 19	अप्रध्नम् नगा।
		(1) 7 - SUI - SUI - SUI		(3) 3.5 g 92 167.5 353		alkaline solution.		
		(4) /g 3533.	1 4	(4) 7 g	(4)	reduction of nitrobenzene with H ₂ /Pd in	(3)	साराय विलयन में बन्गमाइड का निम्नाकरण प्रामान क
	166.	Which is the correct order of increasing energy of	<b>.</b>	۵		ethanol.	ļ	
•		the listed orbitals in the atom of titanium?	166.	टाईटेनियम परमाणु के दिये गये केंक्षकों का ऊर्जा का बढ़ता ह			( (4)	एथनोल में नाइट्रोबेन्जोन का अपचयन H ₂ /Pd के साथ।
		(At. no. Z = 22)	¶ . ;	सहा क्रम कान सा हे? (प. स. Z=22)		the equilibrium constant for $(a) \rightarrow 2NO(a)$ is K the equilibrium	। 171. रहि	$N(\alpha) + O(\alpha) \rightarrow 2NO(\alpha) \approx 100000000000000000000000000000000000$
		(1) 3s 3p 4s 3d		(1) 3s 3p &s 3d 35	新約21E	$1 \qquad 1$	1/1. 914	$1 \sim 2(B) + O_2(B) \leftarrow 210O(B)$ with the indication $K$
	•	(2) $3s 4s 3p 3d$		(2) 3s 4s 3p 3d 3 J	ons	tant for $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO(g)$ will be:	ह,	$\vec{R} = \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) = NO(g)$ का साम्यावस्था
		(3) 4s 3s 3p 3d	1 (	(3) $4s 3s 3p 3d$ $2^{5}$	<b>7</b> 1)	K ²	रिथ	रांक होगा :
·	· * .	(4) $3s 3n 3d 4s$	} •	(4) 3s 3p 3d 4s		**	(1)	K ²
			107 3	्य सर्वापिल गौगित जी शकिसा में सिर्म में भे और		1	(2)	v 1/2
	167.	Reaction of a carbonyl compound with one of the	167.	מווחמי מווחמי מו מווחאמי א וחדי א ממוחים אין איין איין איין איין איין איין איי		$\frac{1}{2}$ K		К ² 3
		following reagents involves nucleophilic addition		आ मकमक गा। मकरनहां थांग के परचात जल का पिलापन ह है। अधिवर्त्तात है .		K	• (3)	$\frac{1}{2}K$ Maline 2
		followed by elimination of water. The reagent is :	{.				(4)	K W
		(1) sodium hydrogen sulphite	1 (	1) सोडियम हाइड्रोजन सल्फाइट	lion	g reducing behaviour of H ₃ PO ₂ is due to :	(-/	4451 t
	·	(2) a Grignard reagent		🔉 ीग्रगनार्ड अभिकर्मक		Presence of two $-OH$ groups and one $P-H$	H ₃ I و.172	¹ O ₂ के प्रबल अपचायक गुण का कारण है :
		(3) hydrazine in presence of feebly acidic	[·· ]	<ol> <li>अम्लीय विलयन में हाइड्राजीन</li> </ol>		bond	· (1)	दो – OH समूहों एवं एक P – H आबंध की उपस्थिति
		solution	1	(1) दाटरोमार्यनिक अप्ल		Presence of one – OH group and two P–H	(2)	एक – ०म समह एवं दो १ – म आबंधों की उपस्थिति
		(4) hydrocyanic acid	····			bonds	(2)	
	168	The variation of the bailing points of the hydrogen	168.	हाइडोजन हैलाइडों के क्वथनांक में परिवर्तन का क्रम निम्न		High electron gain enthalpy of phosphorus	(3)	यात्यगरसं का उच्च इलक्ट्रान प्राहा एन्यल्पा स
	100.	halides is in the order HF > HI > HBr > HCl.		HF > HI > HBr > HCl	化	High oxidation state of phosphorus	(4)	फस्फिरिस को उच्च आक्सोकरण अवस्था
	۰.	What explains the higher boiling point of hydrogen		हाइडोजन फ्लोगइट के उत्तवग क्वशनंक की त्याम्या थ्या			173 निम्न	लिंगित में में किस गौगिक को पतन भान के माल मा
	· · · ·	fluoride?				Dimethyl-2-butene can be prepared by heating	करने	पर २.३ - दाईमेथिल-२- व्यटीन को बनाया जा मकता
		(1) The effect of nuclear shielding is much	1 1	1) पलारान म नागभकाय पाररक्षण प्रभाव बहुत कम हात		of the following compounds with a strong	हे २	
		reduced in fluorine which polarises the HF	1	जा कि मार अंधु का झुवित क(ता ह)	0.46	$(CH_3)_2CH - CH_2 - CH = CH_3$	(1)	(CH-)-CH-CH=CH
4	÷ .		} · (	2) फ्लोरीन की वैद्युत ऋणात्मकता समूह के दूसरे तत्वे		$(CH_{2})_{2}CH - CH - CH - CH$	(*)	(CH) CH = C
ana 1917 - Erst 1944 - Erst		(2) The electronegativity of fluorine is much higher than for other elements in the group.		बहुत अधिक होती है।			(2)	$(\Box_{3/2} \Box_{1} - \Box_{1} - \Box_{1} - \Box_{1} - \Box_{2})$
		(3) There is strong hydrogen honding between	L	अ मान अणुओं में हाइड्रोजन आबंध अधिक होता है।		CH ₃	(2)	CH3 CM 4
-	•	(5) There is strong hydrogen bonding between HF molecules.	hrr	(4) मार अण को आवंध रुर्ज़ा दसरे हाइहोजन हैलाइहो		$(CH_3)_3C - CH = CH_2$	(3)	$(CH_3)_3C - CH = CH_2$
11		(4) The bond energy of HF molecules is greater	``	अधिक है।		$(CH_3)_2 C = CH - CH_2 - CH_3$	(4)	$(CH_3)_2 C = CH - CH_2 - CH_3$
		than in other hydrogen halides.	1				6	
			169.	संकुल आयन [Fe(CN)6] ³⁻ का नाम है :	aque Momn	ounds is the best conductor of electric	174. निम्न	यागिको में से किसका जलीय विलयन विद्युत धारा का
•	169.	The name of complex ion, $[Fe(CN)_6]^{3-1}$ is :		अ हेक्सासायनाइडोफेरेट (111) आयन	fürre	nt?	सबसे	अच्छा सुचालक हे ?
		(1) Hexacyanidoferrate (III) ion			T)	Fructose, C ₆ H ₁₂ O ₆	Or	फ्रक्टोस, C ₆ H ₁₂ O ₆
		(2) Hexacyanoiron (III) ion		(2) હ્વસાસાયનાઆયરન (111) આવન	<b>1</b> 0	Acetic acid, $C_2H_4O_2$	(2)	ऐसीटिक अम्ल, C₂H₄O₂ ((L अ)
	•	(3) Hexacyanitoferrate (III) ion	1 (	3) हेक्साइनिटोफेरेट (111) आयन	N.	Hydrochloric acid. HCl	(3)	हाइडोक्लोरिक अम्ल भटा
	•	(4) Tricyanoferrate (III) ion		<ol> <li>ट्राईसायनोफेरेट (111) आयन</li> </ol>	14	Ammonia NH.	(C)	and the state is the state
			•		₩/ .		(4)	અમાાવયા, 1VH3 <b>∿</b> * ્≃

в	3	18				
175.	The vacant space in bcc lattice unit cell is :	175. bcc जालक एकक कोष्ठिका में रिक्त स्थान होता है :				
	(1) 32%	LHT 32%				
	(2) 26%	(2) 26%				
•	(3) 48%	(3) 48%				
÷	(4) 23%	(4) 23%				
176.	What is the mole fraction of the solute in a 1.00 m aqueous solution?	1767 1.00 m जलीय विलयन में विलेय की मोन अश है (1) 0.0177				
	(1) 0.0177	(2) 0.177				
	(2) 0.177	(3) 1.770				
	(3) 1.770	(4) 0.0354				
•	(4) 0.0354	$172$ हवा की उपस्थिति में वेन्जीन का ऑक्सीव रण V $_{ m 2O}$				
177.	The oxidation of benzene by $V_2O_5 in$ the presence of	देता है :				
	air produces :	(1) बेन्जेल्डिहाइड				

वेन्जॉईक एनहाइड्राइड (2) मेलैईक एनहाइडाइड (3)

वेन्जॉईक अम्ल (4)

178. कैप्रोलेक्टम का उपयोग निम्न में से किसके उत्पादन में ह

नाइलॉन - 6,6 (1)

~ (2) नाइलॉन - 6

(3) टेफलॉन

टेरिलीन (4)

179. निम्न अभिक्रिया

NaOH

किस नाम से जानी जाती है ?

शॉटन-वामन अभिक्रिया (1)

फ्रींडेल-क्राफ्ट अभिक्रिया (2)

पर्किन अभिक्रिया (3)

ऐसीटाइलेशन (ऐसिलन) अभिक्रिया A

180. जल अणुओं की अधिकतम संख्या है 🥿 .140.

(1) 18 मोल पानी में

पानी के 18 अणुओं में (2)1.8 ग्राम पानी में

(3)

18 ग्राम पानी में (4)

-00ò-



39 Space For Rough Work / रफ कार्य के लिए जगह

В

(2) Nylon-6 Teflon (3) (4) Terylene 179. The following reaction

178. Caprolactam is used for the manufacture of :

is known by the name :

B

(1)

(2)

(3)

(4)

(1)

benzaldehyde

benzoic acid

Nylon - 6, 6

benzoic anhydride

maleic anhydride

- Schotten-Baumen reaction (1)
- Friedel Craft's reaction (2)
- Perkin's reaction (3)
- (4) Acetylation reaction

180. The number of water molecules is maximum in :

- (1) 18 moles of water
- 18 molecules of water (2)
- 1.8 grain of water (3)
- (4) 18 gram of water

000-