RE-AIPMT – 2015 TEST PAPER WITH ANSWER & SOLU (HELD ON SATURDAY 25th JULY, 2015)

1. 2,3–Dimethyl–2–butene can be prepared by heating which of the following compounds with a strong acid? $(1)(CH_{2})_{2}C=CH-CH_{2}-CH_{3}$ $(2)(CH_3)_2CH-CH_2-CH=CH_2$

(4)
$$(CH_3)_3C-CH=CH_2$$

Ans. (4)

Sol.
$$H_3C - C - CH = CH_2$$

 $H_3C - C - CH = CH_2$
 $H_3C - C - CH = CH_2$
 $H_3C - C - CH - CH_3$
 $H_3C - C - CH - CH_3$

$$H_{3}C-C=C-CH_{3} \leftarrow H_{3}C-C-CH-CH_{3}$$

$$CH_{3}CH_{3}CH_{3}C-C-CH-CH_{3}CH_{$$

2. Gadolinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium?

(1) [Xe]
$$4f^{7}5d^{1}6s^{2}$$
 (2) [Xe] $4f^{6}5d^{2}6s^{2}$
(3) [Xe] $4f^{8}6d^{2}$ (4) [Xe] $4f^{9}5s^{1}$

Ans. (1)

- $_{64}$ Gd = $_{54}$ [Xe]6s²4f⁷5d¹ Sol.
- The formation of the oxide ion, $O^{2-}(g)$, from oxygen 3. atom requires first an exothermic and then an endothermic step as shown below :

$$O(g) + e^- \rightarrow O_{(g)}^-$$
; $\Delta_f H^{\ominus} = -141 \text{ kJ mol}^{-1}$

$$O^{-}(g) + e^{-} \rightarrow O^{2-}_{(g)}$$
; $\Delta_{f}H^{\ominus} = +780 \text{ kJ mol}^{-1}$

Thus process of formation of O^{2-} in gas phase is unfavourable even thought O^{2-} is isoelectronic with neon. It is due to the fact that,

- (1) Oxygen is more electronegative
- (2) Addition of electron in oxygen results in larger size of the ion
- (3) Electron repulsion outweighs the stability gained by achieving noble gas configuration
- (4) O^- ion has comparatively smaller size than oxygen atom

Ans. (3)

4. The number of structural isomers possible from the molecular formula C_3H_9N is : (2) 3 (3) 4(1) 2(4) 5

Ans. (3)

Sol.
$$C_3H_9N$$
: $CH_3^-CH_2^-CH_2^-NH_2$
 $CH_3^-CH^-CH_3$
 I_{NH_2} 1° amine

$$\begin{array}{c} CH_3-CH_2-NH-CH_3 \end{array} 2^{\circ} \text{ amine} \\ CH_3-N-CH_3 \\ \downarrow \\ CH_3 \end{array} 3^{\circ} \text{ amine} \end{array}$$

5. If the equilibrium constant for

$$N_2(g) + O_2(g) \iff 2NO(g)$$
 is K, the equilibrium
constant for $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \iff NO(g)$ will
be :-

3° amine

(1) K (2)
$$K^2$$
 (3) $K^{1/2}$ (4) $\frac{1}{2}K$

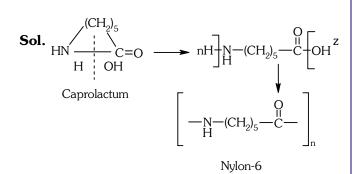
Ans. (3)

Sol. $N_2(g) + O_2(g) \longrightarrow 2NO(g); K$

$$\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \Longrightarrow NO(g); K'$$

when a reaction is multiplied by 1/2 then $K' = (K)^{1/2}$

- 6. Which one of the following pairs of solution is not an acidic buffer ?
 - (1) H₂CO₃ and Na₂CO₃
 - (2) H₃PO₄ and Na₃PO₄
 - (3) HClO₄ and NaClO₄
 - (4) CH₃COOH and CH₃COONa


Ans. (3)

- **Sol.** $HClO_4$ and $NaClO_4$ cannot act as an acidic buffer.
- 7. Aqueous solution of which of the following compounds is the best conductor of electric current? (1) Ammonia, NH₂
 - (2) Fructose, $C_6 H_{12} O_6$
 - (3) Acetic acid, $C_2H_4O_2$
 - (4) Hydrochloric acid, HCl

Ans. (4)

Sol. Aqueous solution of HCl is the best conductor of electric current because HCl is strong acid, so it dissociates completely into ions.

Caprolactam is used for the manufacture of : 8. (1) Terylene (2) Nylon - 6, 6 (3) Nylon - 6 (4) Teflon Ans. (3)

- 9. On heating which of the following releases CO₂ most easily ?
 - (1) MgCO₃ (2) CaCO₃ (4) Na₂CO₃
 - $(3) K_2 CO_3$

Ans. (1)

Sol. Thermal stability order

 $K_2CO_3 > Na_2CO_3 > CaCO_3 > MgCO_3$

Therefore $MgCO_3$ releases CO_2 most easily

 $MgCO_3 \xrightarrow{\Delta} MgO + CO_2$

Strong reducing behaviour of H_3PO_2 is due to : 10.

(1) High oxidation state of phosphorus

- (2) Presence of two –OH groups and one P–H bond
- (3) Presence of one -OH group and two P-H bonds
- (4) High electron gain enthalpy of phosphorus

Ans. (3)

Sol. Strong reducing behaviour of H_3PO_2 All oxy-acid of phosphorus which contain P-H bond act as reductant.

presence of one -OH group and two P-H bonds

11. Decreasing order of stability of O_2, O_2^-, O_2^+ and O_2^{2-} is :-

Ans. (3)

Sol. Given species : O_2 , O_2^{-1} , O_2^{+1} , O_2^{2-1} Total number of electrons

$$O_2 \rightarrow 16e^-$$
$$O_2^{-1} \rightarrow 17e^-$$
$$O_2^{+1} \rightarrow 15e^-$$
$$O_2^{2-} \rightarrow 18e^-$$

$$\begin{array}{cccccccc} O_2^{+1} & O_2 & O_2^{-1} & O_2^{-2} \\ 2.5 & 2 & 1.5 & 1 \end{array}$$

Bond order Stability ×B.O.

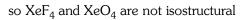
* Stability order
$$\left[O_2^{+1} > O_2 > O_2^{-1} > O_2^{2-1}\right]$$

- 12. The number of water molecules is maximum in :-(1) 18 gram of water
 - (2) 18 moles of water
 - (3) 18 molecules of water
 - (4) 1.8 gram of water

Ans. (2)

- \therefore 1 mole water = 6.02 × 10²³ molecules Sol. \therefore 18 mole water = 18 × 6.02 × 10²³ molecules so, 18 mole water has maximum number of molecules.
- In which of the following pairs, both the species are 13. not isostructural?
 - (1) NH₃, PH₃
 - (2) XeF_4 , XeO_4
 - (3) SiCl₄, PCl⁺₄
 - (4) Dimond, silicon carbide

Sol. (i) Hybridiation of NH₃ [σ =3, lp=1] sp³ geometry : tetrahedral


$$\begin{array}{c} \textcircled{}^{N}_{H} (pyramidal) & \textcircled{}^{P}_{H} (pyramidal) \\ H & H & H \\ \end{array}$$

(ii) Structures of XeF_4 is square planar.

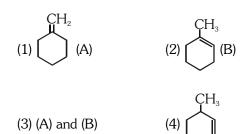
$$\begin{array}{c} F \\ F \\ F \\ (square planar) \end{array}$$
 sp³ d² hybridisation

Structure of XeO₄ is tetrahedral

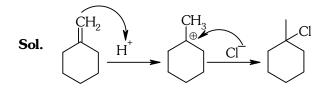
$$0$$

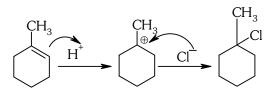
 Xe
 0 0 Sp^3 hybridisation

2


(iii) Structure of SiCl₄ is tetrahedral

$$Cl$$
 Si Cl Cl Cl Cl Cl Cl Sp^3 hybridisation


Structure of PCl_4^+ is tetrahedral


(iv) Diamond & SiC both are isostructural because both have tetrahedral arrangement and central atom is sp³ hybridised.

14. In the reaction with HCl, an alkene reacts in accordance with the Markovnikov's rule, to give a product 1-chloro-1-methylcyclohexane. The possible alkene is :-

Ans. (3)

15. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO₄ for complete oxidation?

(2) $Fe(NO_2)_2$

(4) FeSO₂

(1) FeC_2O_4

- (3) FeSO₄
- Ans. (3)

- 16. Reaction of phenol with chloroform in presence of dilute sodium hydroxide finally introduces which one of the following functional group? (1) -CHCl₂ (2) -CHO $(3) - CH_2Cl$ (4)-COOH Ans. (2) Reimer Tieman reaction OH OH CHO + CHCl₃ + NaOH Sol. 17. The vacant space in bcc lattice unit cell is : (1) 23% (2) 32% (3) 26% (4) 48% Ans. (2) **Sol.** Packing efficiency in bcc lattice = 68% \therefore vacant space in bcc lattice = 100 - 68 = 32%18. Which of the statements given below is incorrect? (1) ONF is isoelectronic with $O_2 N^-$ (2) OF_2 is an oxide of fluorine (3) Cl_2O_7 is an anhydride of perchloric acid (4) O_3 molecule is bent Ans. (2) Sol. (i) No. of electron in ONF = 24
 - No. of electron in ONF = 24No. of electron in $NO_2^- = 24$ both are isoelectronic (ii) OF_2 is a fluoride of oxygen not oxide of fluorine because EN of fluorine is more than oxygen $OF_2 = oxygen$ difluoride (iii) Cl_2O_7 is an anhydride of perchloric acid

 $2\text{HClO}_4 \xrightarrow{\Delta} \text{Cl}_2\text{O}_7$

(iv) O_3 molecule is bent

- **19.** The name of complex ion, $[Fe(CN)_6]^{3-}$ is :- (1) Tricyanoferrate (III) ion
 - (2) Hexacyanidoferrate (III) ion
 - (3) Hexacyanoiron (III) ion
 - (4) Hexacyanitoferrate (III) ion

Ans. (2)

Sol. [Fe(CN)₆]⁻³ Hexacyanido ferrate (III) ion

- - (1) the ratio of chemical species to each other in a balanced equation

(2) the ratio of elements to each other in a compound

- (3) the definition of mass in units of grams
- (4) the mass of one mole of carbon

Ans. (4)

- **Sol.** : mass of 1 mol (6.022×10^{23} atoms) of carbon = 12g
 - If Avogadro Number (N_A) is changed

than mass of 1 mol (6.022 $imes 10^{20}$ atom) of carbon

$$= \frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}} = 12 \times 10^{-3} g$$

Therefore the mass of 1 mol of carbon is changed

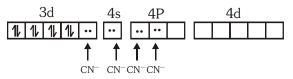
- **21.** Which of the following statements is not correct for a nucleophile ?
 - (1) Nucleophiles attack low e^- density sites
 - (2) Nucleophiles are not electron seeking
 - (3) Nucleophile is a Lewis acid
 - (4) Ammonia is a nucleophile

Ans. (3)

- **Sol.** Reason : Nucleophiles are electron rich species so act as Lewis base.
- **22.** A gas such as carbon monoxide would be most likely to obey the ideal gas law at :
 - (1) high temperatures and high pressures
 - (2) low temperatures and low pressures
 - (3) high temperatures and low pressures
 - (4) low temperatures and high pressures

Ans. (3)

- **Sol.** Real gases show ideal gas behaviour at high tempratures and low pressures.
- **23.** The hybridization involved in complex $[Ni(CN)_4]^{2-1}$ is (At.No. Ni = 28)


(1) d^2sp^2	(2) d^2sp^3	
(3) dsp ²	(4) sp ³	

Ans. (3)

Sol. $[Ni(CN)_4]^{2-}$ oxidation state of Ni is +2 x -4 = 2x = +2 $Ni^{2+} \rightarrow [Ar]^{18} 3d^8 4s^0$

due to presence of strong field ligand all unpaired electrons are paired up.

Hybridisation of $[Ni(CN)_4]^{2-}$ is dsp²

24. The heat of combustion of carbon to CO_2 is -393.5 kJ/mol. The heat released upon formation of 35.2 g of CO_2 from carbon and oxygen gas is:

Ans. (3)

Sol. Formation of CO_2 from carbon and dioxygen gas can be represented as

C(s) + O_{2(g)} →CO_{2(g)}; $\Delta_f H = -393.5 \text{ kJ mol}^{-1}$ (1 mole = 44 g)

Heat released on formation of 44 g CO_2

$$= \frac{-393.5 \text{ kJ mol}^{-1}}{44 \text{g}} \times 35.2 \text{g}$$

= -315 kJ

25. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample ?

(1) 60	(2) 84
(3) 75	(4) 96

$$(At. Wt. : Mg = 24)$$

Ans. (2)

Sol. MgCO₃(s)
$$\rightarrow$$
 MgO(s) + CO₂(g)

moles of MgCO₃ = $\frac{20}{84}$ = 0.238 mol

From above equation

- 1 mole $MgCO_3$ gives 1 mole MgO
- $\therefore~0.238~\text{mole}~\text{MgCO}_3$ will give 0.238~mole~MgO
- $= 0.238 \times 40 \text{ g} = 9.523 \text{ g MgO}$

Practical yield of MgO = 8 g MgO

:. % purity =
$$\frac{8}{9.523} \times 100 = 84\%$$

26. What is the mole fraction of the solute in a 1.00 m aqueous solution ?

(1) 0.0354	(2) 0.0177
(3) 0.177	(4) 1.770

Ans. (2)

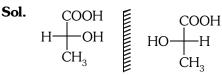
Sol. 1.00 m solution means 1 mole solute is present in 1000 g water.

$$n_{H_2O} = \frac{1000}{18} = 55.5 \text{mol } H_2O$$

$$X_{\text{solute}} = \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{H}_{2}\text{O}}} = \frac{1}{1 + 55.5} = 0.0177$$

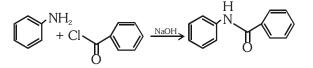
- **27.** The correct statement regarding defects in crystalline solids is :-
 - (1) Frenkel defect is a dislocation defect
 - (2) Frenkel defect is found in hallides of alkaline metals
 - (3) Schottky defects have no effect on the density of crystalline solids
 - (4) Frenkel defects decrease the density of crystalline solids

Ans. (1)


- Sol. Frenkel defect is a dislocation defect
- **28.** The stability of +1 oxidation state among Al, Ga, In and TI increases in the sequence :
 - (1) TI < In < Ga < Al
 - (2) In < TI < Ga < Al

(4) Al < Ga < In < TI

Ans. (4)


- 29. Two possible stereo-structures of
 - $\rm CH_3CHOH.COOH,$ which are optically active, are called :-
 - (1) Enantiomers
 - (2) Mesomers
 - (3) Diastereomers
 - (4) Atropisomers

Ans. (1)

Both are enantiomers

30. The following reaction

- is known by the name :
- (1) Acetylation reaction
- (2) Schotten-Baumen reaction
- (3) Friedel–Craft's reaction
- (4) Perkin's reaction

Ans. (2)

- **Sol.** Benzoylation of aniline is an example of Schotten Bauman reaction.
- **31.** The sum of coordination number and oxidation number of the metal M in the complex $[M(en)_2(C_2O_4)]Cl$ (where en is ethylenediamine) is :-

Ans. (3) Sol. $[M(en)_2(C_2O_4)]Cl$

- oxidation state of M = + 3Coordination number of M = 6Sum of oxidation state + coordination number =3 + 6 = 9
- **32.** Reaction of carbonyl compound with one of the following reagents involves nucleophilic addition followed by elimination of water. The reagent is :
 - (1) hydrocyanic acid
 - (2) sodium hydrogen sulphite
 - (3) a Grignard reagent
 - (4) hydrazine in presence of feebly acidic solution

Ans. (4)

- **Sol.** Reaction of carbonyl compounds with ammonia derivatives is an example of Nucleophilic addition elimination reaction.
- **33.** Which one of the following esters gets hydrolysed *most easily* under alkaline conditions ?

(1)
$$\bigcirc$$
 OCOCH₃
(2) \bigcirc OCOCH₃
(3) \bigcirc OCOCH₃
(4) \bigcirc OCOCH₃
(4) \bigcirc OCOCH₃

Ans. (3)

- **Sol.** EWG (electron withdrawing group) increases reactivity towards nucleophilic substitution reaction. -NO₂ is strong electron withdrawing group.
- **34.** In an $S_N 1$ reaction on chiral centres, there is :
 - (1) 100% retention
 - (2) 100% inversion
 - (3) 100% racemization
 - (4) inversion more than retention leading to partial recemization

Ans. (4)

- **Sol.** $S_N 1$ reaction gives racemic mixture with slight predominance of that isomer which corresponds to inversion because $S_N 1$ also depends upon the degree of 'shielding' of the front side of the reacting carbon.
- The rate constant of the reaction $A \rightarrow B$ is 35. 0.6×10^{-3} mole per second. If the concentration of A is 5 M, then concentration of B after 20 minutes is :-

(1) 0.36 M	(2) 0.72 M
(3) 1.08 M	(4) 3.60 M

Ans. (2)

Sol. For zero order reaction :

x = K.t $= 0.6 \times 10^{-3} \times 20 \times 60$ x = 0.72 M

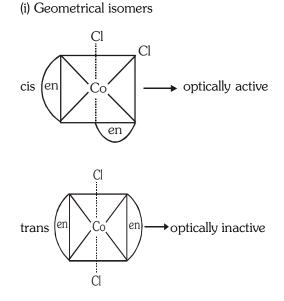
What is the pH of the resulting solution when equal **36**. volumes of 0.1 M NaOH and 0.01 M HCl are mixed?

(1) 7.0	(2) 1.04
(3) 12.65	(4) 2.0

(3) 12.65

Ans. (3)

Sol. $N_1V_1 - N_2V_2 = N.V.$ $0.1 \times 1 - 0.01 \times 1 = N \times 2$


$$[OH^{-}] = N_{R} = \frac{0.09}{2} = 0.045 \text{ N}$$

 $pOH = -\log (0.045) = 1.35$
 $\therefore pH = 14 - pOH = 14 - 1.35 = 12.65$

Number of possible isomers for the complex 37. $[Co(en)_2Cl_2]$ Cl will be : (en = ethylenediamine)

(1) 3	(2) 4
(3) 2	(4) 1

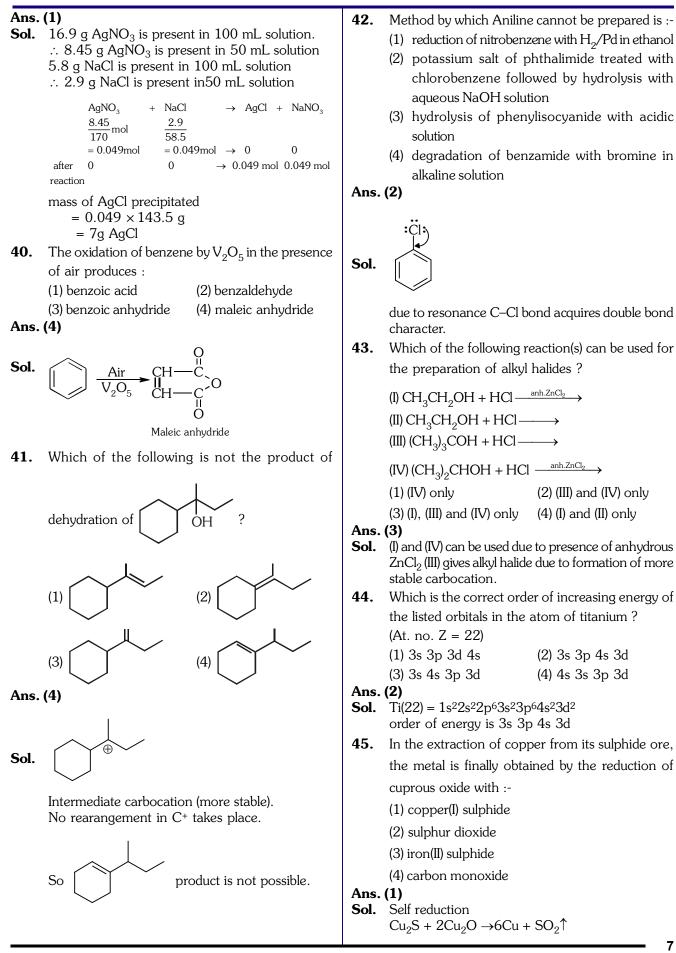
Ans. (1)

[Co(en)₂Cl₂]Cl Sol. Possible isomers -

(ii) In trans form plane of symmetry present, so trans form is optically inactive but cis is optically active. Total number of stereoisomer = 2+1=3

- The variation of the boiling points of the hydrogen 38. halides is in the order HF > HI > HBr > HCL. What explains the higher boiling point of hydrogen fluoride ?
 - (1) The bond energy of HF molecules is greater than in other hydrogen halides
 - (2) The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule
 - (3) The electronegativity of fluorine is much higher than for other elements in the group.
 - (4) There is strong hydrogen bonding between HF molecules

Ans. (4)


Sol. Due to strong H-bonding in HF molecule, boiling point is highest for HF

HF > HI > HBr > HI

What is the mass of the precipitate formed when **39**. 50 mL of 16.9% solution of $AgNO_3$ is mixed with 50 mL of 5.8% NaCl solution ?

> (Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5) (1) 7 g (2) 14 g (3) 28 g (4) 3.5 g

6

- **46.** Root pressure develops due to :
 - (1) Increase in transpiration
 - (2) Active absorption
 - (3) Low osmotic potential in soil
 - (4) Passive absorption

Ans. (2)

- **47.** Which one is a **wrong** statement ?
 - Brown algae have chlorophyll a and c, and fucoxanthin
 - (2) Archegonia are found in Bryophyta, Pteridophyta and Gymnosperms
 - (3) Mucor has biflagellate zoospores
 - (4) Haploid endosperm is typical feature of gymnosperms

Ans. (3)

- **48.** Which of the following structures is **not** found in prokaryotic cells?
 - (1) Plasma membrane
 - (2) Nuclear envelope
 - (3) Ribosome
 - (4) Mesosome

Ans. (2)

- **49.** Which one of the following animals has two separate circulatory pathways ?
 - (1) Shark (2) Frog (3) Lizard (4) Whale

Ans. (4)

- **50.** Most animals that live in deep oceanic waters are: (1) Detritivores
 - (2) Primary consumers
 - (3) Secondary consumers
 - (4) Tertiary consumers

Ans. (1)

51. An association of individuals of different species living in the same habitat and having functional interactions is :

(1) Population	(2) Ecological niche
(3) Biotic community	(4) Ecosystem

Ans. (3)

- **52.** The oxygen evolved during photosynthesis comes from water molecules. Which one of the following pairs of elements is involved in this reaction?
 - (1) Magnesium and Chlorine
 - (2) Manganese and Chlorine
 - (3) Manganese and Potassium
 - (4) Magnesium and Molybdenum

Ans. (2)

- 53. Axile placentation is present in :
 (1) Argemone
 (2) Dianthus
 (3) Lemon
 (4) Pea
- Ans. (3)
- **54.** In which of the following both pairs have **correct** combination :

(1)	Gaseous nutrient cycle	Sulphur and Phosphorus
(1)	Sedimentary nutrient cycle	Carbon and Nitrogen
(2)	Gaseous nutrient cycle	Carbon and Nitrogen
(2) Sedimentary nutrient cycle		Sulphur and Phosphorus
(0)	Gaseous nutrient cycle	Carbon and sulphur
(3)	Sedimentary nutrient cycle	Nitrogen and phosphorus
(4)	Gaseous nutrient cycle	Nitrogen and sulphur
	Sedimentary nutrient cycle	Carbon and Phosphorus

Ans. (2)

- **55.** In mammalian eye, the 'fovea' is the center of the visual field, where :
 - (1) more rods than cones are found.
 - (2) high density of cones occur, but has no rods
 - (3) the optic nerve leaves the eye
 - (4) only rods are present

Ans. (2)

- **56.** Choose the **wrong** statement :
 - (1) Yeast is unicellular and useful in fermentation
 - (2) *Penicillium* is multicellular and produces antibiotics
 - (3) *Neurospora* is used in the study of biochemical genetics
 - (4) Morels and truffles are poisonous mushrooms

Ans. (4)

- **57.** Which of the following are **not** membrane-bound? (1) Mesosomes
 - (2) Vacuoles
 - (3) Ribosomes
 - (4) Lysosomes

Ans. (3)

- **58.** In which of the following interactions both partners are adversely affected ?
 - (1) Mutualism
 - (2) Competition
 - (3) Predation
 - (4) Parasitism

Ans. (2)

8

59. A colour blind man marries a woman with normal sight who has no history of colour blindness in her family. What is the probability of their grandson being colour blind ?

(1) 0.25	(2) 0.5
(3) 1	(4) Nil

Ans. (4)

- **60.** Ectopic pregnancies are referred to as :
 - (1) Pregnancies terminated due to hormonal imbalance
 - (2) Pregnancies with genetic abnormality.
 - (3) Implantation of embryo at site other than uterus.
 - (4) Implantation of defective embryo in the uterus

Ans. (3)

- 61. Cellular organelles with membranes are :
 - (1) Lysosomes, Golgi apparatus and mitochondria
 - (2) Nuclei, ribosomes and mitochondria
 - (3) Chromosomes, ribosomes and endoplasmic reticulum
 - (4) Endoplasmic reticulum, ribosomes and nuclei

Ans. (1)

Cell wall is absent in :		
(1) Nostoc	(2) Aspergillus	
(3) Funaria	(4) Mycoplasma	

Ans. (4)

63. The term "linkage" was coined by :
(1) W.Sutton
(2) T.H. Morgan
(3) T.Boveri
(4) G.Mendel

Ans. (2)

- **64.** Which of the following biomolecules does have a phosphodiester bond ?
 - (1) Nucleic acids in a nucleotide
 - (2) Fatty acids in a diglyceride
 - (3) Monosaccharides in a polysaccharide
 - (4) Amino acids in a polypeptide

Ans. (1)

- **65.** The primary dentition in human differs from permanent dentition in **not** having one of the following type of teeth :
 - (1) Incisors
 - (2) Canine
 - (3) Premolars
 - (4) Molars

Ans. (3)

- **66**. A protoplast is a cell : (1) without cell wall (2) without plasma membrane (3) without nucleus (4) undergoing division Ans. (1) **67**. In which group of organisms the cells walls form two thin overlapping shells which fit together ? (1) Slime moulds (2) Chrysophytes (3) Euglenoids (4) Dinoflagellates Ans. (2) **68**. The DNA molecules to which the gene of interest is integrated for cloning is called : (1) Carrier (2) Transformer (3) Vector (4) Template Ans. (3) **69**. Male gametophyte in angiosperms produces : (1) Three sperms (2) Two sperms and a vegetative cell (3) Single sperm and a vegetative cell (4) Single sperm and two vegetative cells Ans. (2) 70. Coconut water from a tender coconut is : (1) Degenerated nucellus (2) Immature embryo (3) Free nuclear endosperm (4) Innermost layers of the seed coat Ans. (3) 71. The species confined to a particular region and not found elsewhere is termed as : (1) Rare (2) Keystone (3) Alien (4) Endemic Ans. (4) 72. Metagenesis refers to : (1) Presence of a segmented body and parthenogenetic mode of reproduction (2) Presence of different morphic forms (3) Alternation of generation between asexual and sexual phases of an organism (4) Occurrence of a drastic change in form during post-embryonic development Ans. (3)
- **73.** The enzymes that is **not** present in succus entericus is :
 - (1) lipase (2) maltase
 - (3) nucleases (4) nucleosidase
- Ans. (3)

- 74. Eutrophication of water bodies leading to killing of fishes is mainly due to non-availability of : (2) food (1) oxygen (3) light
 - (4) essential minerals

Ans. (1)

- 75. The function of the gap junction is to :
 - (1) stop substance from leaking across a tissue
 - (2) performing cementing to keep neighbouring cells together
 - (3) Facilitate communication between adjoining cells by connecting the cytoplasm for rapid transfer of ions, small molecules and some large molecules
 - (4) separate two cells from each other.

Ans. (3)

Match the following list of microbes and their **76**. importance :

(a)	Saccharomyces cerevisiae		(i)	Production of immunosuppressive agents	
(b)	Monascus purpureus		(ii)	Ripening of Swiss cheese	
(c)	Trichoderma polysporum		(iii)	Commercial production of ethance	ol
(d)	Propionibacterium sharmanii		(iv)	Production of blood cholesterol lowering agents	
-	(a)	(b)	((c) (d)	
	(1) (iii) (i)		((iv) (ii)	
	(2) (iii) (iv)		((i) (ii)	
	(3) (iv) (iii)		((ii) (i)	
	(4) (iv)	(ii)	((i) (iii)	

Ans. (2)

- 77. Arrange the following events of meiosis in correct sequence :
 - (a) Crossing over
 - (b) Synapsis
 - (c) Terminalisation of chaismata
 - (d) Disappearance of nucleolus

(1)	(b), (c), (d), (a)	(2) (b), (a), (d), (c)
(3)	(b), (a), (c), (d)	(4) (a), (b), (c), (d)

- Ans. (3)
- 78. The cutting of DNA at specific locations became possible with the discovery of :
 - (1) Ligases (2) Restriction enzymes
 - (3) Probes (4) Selectable markers
- Ans. (2)

79. During biological nitrogen fixation, inactivation of nitrogenase by oxygen poisoning prevented by : (1) Cytochrome (2) Leghaemoglobin (3) Xanthophyll (4) Carotene

Ans. (2)

- 80. Grafted kidney may be rejected in a patient due to (1) Innate immune response
 - (2) Humoral immune response
 - (3) Cell-mediated immune response
 - (4) Passive immune response

Ans. (3)

- 81. The body cells in cockroach discharge their nitrogenous waste in the haemolymph mainly in the form of :
 - (1) Calcium carbonate (2) Ammonia
 - (4) Urea (3) Potassium urate

Ans. (3)

- 82. Filiform apparatus is characteristic feature of :
 - (1) Synergids
 - (2) Generative cell
 - (3) Nucellar embryo
 - (4) Aleurone cell

Ans. (1)

- **83**. Acid rain is caused by increase in the atmospheric concentration of :
 - (1) O₃ and dust (2) SO_2 and NO_2
 - (4) CO₂ and CO (3) SO₃ and CO

Ans. (2)

- 84. The wheat grain has an embryo with one large, shield-shaped cotyledon known as :
 - (1) Coleoptile (2) Epiblast
 - (3) Coleorrhiza (4) Scutellum

Ans. (4)

- **85**. Among china rose, mustard, brinjal, potato, guava, cucumber, onion and tulip, how many plants have superior ovary?
 - (1) Four (2) Five (3) Six (4) Three

Ans. (3)

- 86. Which of the following is **not** a function of the skeletal system?
 - (1) Locomotion
 - (2) Production of erythrocytes
 - (3) Storage of minerals
 - (4) Production of body heat

Ans. (4)

10 -

				CODE-A
87.	Golden rice is a genetically modified crop plant	93.	Which of the following e	vents is not associated with
	where the incorporated gene is meant for		ovulation in human fem	nale?
	biosynthesis of :		(1) LH surge	
	(1) Vitamin A		(2) Decrease in estradio	ol
	(2) Vitamin B		(3) Full development of	Graafian follicle
	(3) Vitamin C		(4) Release of secondar	ry oocyte
	(4) Omega 3	Ans.	(2)	
Ans.	(1)	94.	• •	of cells, internal cavities lined
88.	Chromatophores take part in :		• •	gellated cells and indirect
	(1) Respiration			naracteristics of phylum :
	(2) Photosynthesis		(1) Protozoa	(2) Coelenterata
	(3) Growth		(3) Porifera	(4) Mollusca
	(4) Movement	Ans.	(3)	
Ans.		95.	· ·	ng hormones is not involved
			in sugar metabolism ?	5
89.	Select the wrong statement :		(1) Glucagon	(2) Cortisone
	(1) Mosaic disease in tobacco and AIDS in human		(3) Aldosterone	(4) Insulin
	being are caused by viruses	Ans.		
	(2) The viroids were discovered by D.J. Ivanowski	96.	• •	g diseases is caused by a
	(3) W.M. Stanley showed that viruses could be crystallized	<i>J</i> 0.	protozoan?	g diseases is caused by a
	(4) The term 'contagium vivum fluidum' was coined		(1) Blastomycosis	(2) Syphilis
	by M.W. Beijerinek		(3) Influenza	(4) Babesiosis
A == a		Ans.	(4)	
Ans.		97.	Outbreeding is an imp	ortant strategy of animal
90.	A pleiotropic gene :		husbandry because it :	
	(1) controls multiple traits in an individual		(1) exposes harmful r	ecessive genes that are
	(2) is expressed only in primitive plants(3) is a gene evolved during Pliocene		eliminated by select	ion
	(4) controls a trait only in combination with another		(2) helps in accumulation	on of superior genes.
			(3) is useful in producin	g purelines of animals.
•	gene		(4) is useful in overcomi	ing inbreeding depression
Ans.		Ans.	(4)	
91.	Human urine is usually acidic because :	98 .	A childless couple can b	pe assisted to have a child
	(1) hydrogen ions are actively secreted into the		through a technique cal	lled GIFT. The full form of
	filtrate.		this technique is :	
	(2) the sodium transporter exchanges one hydrogen		(1) Germ cell internal fa	allopian transfer
	ion for each sodium ion, in peritubular		(2) Gamete inseminated	l fallopian transfer
	capillaries.		(3) Gamete intra fallopi	an transfer
	(3) excreted plasma proteins are acidic		(4) Gamete internal fert	ilization and transfer
	(4) potassium and sodium exchange generates	Ans.	(3)	
	acidity	99 .	A jawless fish, which lay	ys eggs in fresh water and
Ans.			whose ammocoetes lar	rvae after metamorphosis
92 .	Auxin can be bioassayed by :		return to the ocean is :	
<i>, .</i>	(1) Lettuce hypocotyl elongation		(1) Petromyzon	
	(2) Avena coleoptile curvature		(2) Eptatretus	
	(3) Hydroponics		(3) Myxine	
	(4) Potometer		(4) Neomyxine	
4		Ans.	· · · ·	
Ans.	(4)		× /	

100.	The structures that helps	some bacteria to attach to	108.	The chitinous exoskelet	on of arthropods is formed
	rocks and/or host tissue	s are :		by the polymerisation of	of :
	(1) Holdfast	(2) Rhizoids		(1) lipoglycans	
	(3) Fimbriae	(4) Mesosomes		(2) keratin sulphate and	d chondroitin sulphate
Ans.	(3)			(3) D-glucosamine	-
101.	If you suspect major def	iciency of antibodies in a		(4) N-acetyl glucosamin	ne
	person, to which of the fo	llowing would you look for	Ans.		
	confirmatory evidence?			• •	ch are decomposers of litter
	(1) Serum globulins		107.	and help in mineral cyc	
	(2) Fibrinogin in plasma			(1) Ascomycetes	
	(3) Serum albumins			(2) Deuteromycetes	
	(4) Haemocytes			· · ·	
Ans.	(1)			(3) Basidiomycetes	
102.		s-II is not completed until?	_	(4) Phycomycetes	
	(1) birth	(2) puberty	Ans.		
_	(3) fertilization	(4) uterine implantation	110.	-	nd the wings of an insect
Ans.	• •			are :	
103.	acellular ?	yers in an antral follicle is		(1) homologous structure evolution	es and represent convergent
	(1) Zona pellucida	(2) Granulosa		(2) homologous structur	res and represent divergent
	(3) Theca interna	(4) Stroma		evolution	
Ans.		1		(3) analogous structures	s and represent convergent
104.		on pea plants, Mendel did		evolution	
	not use : (1) Flower position	(2) Seed colour		(4) phylogenetic structur	res and represent divergent
	(3) Pod length	(4) Seed shape		evolution	
Ans.	-	(I) beeu shape	Ans.	(3)	
		g fruits is parthenocarpic?	111.	Flowers are unisexual i	n :
2001	(1) Banana	(2) Brinjal		(1) Onion	(2) Pea
	(3) Apple	(4) Jackfruit		(3) Cucumber	(4) China rose
Ans.			Ans.	(3)	
	• •	crosporogenesis and			ation of the toxicant at
	megasporogenesis :			successive trophic level	
	(1) occur in ovule			(1) Biogeochemical cycl	
	(2) occur in anther			(2) Biomagnification	
	(3) form gametes withou	t furthers divisions		(3) Biodeterioration	
_	(4) involve meiosis			(4) Biotransformation	
Ans.	• •		A		
107.	A gene showing codomi		Ans.		
	heterozygote	dently expressed in the	113.	cord would result in los	rior horn cells of the spinal as of :-
	(2) one allele dominant of			(1) Integrating impulses	3
		n the same chromosome		(2) Sensory impulses	
	(4) alleles that are recess	sive to each other		(3) voluntary motor imp	
Ans.	(1)			(4) Commissural impuls	Ses
			Ans.	(3)	

114. Roots play insignificant role in absorption of water in :

(1) Wheat (2) Sunflower (3) *Pistia* (4) Pea

- Ans. (3)
- **115.** Match the columns and identify the correct option:

	Column-I		Column-II
(a)	Thylakoids	(i)	Disc-shaped sacs in Golgi apparatus
(b)	Cristae	(ii)	Condensed structure of DNA
(c) Cisternae (i		(iii	Flat membranous sacs in stroma
(d)	Chromatin	(iv)	Infoldings in mitochondria
(a	i) (b)	(c	;) (d)
(1) (ii	i) (iv)	(ii) (i)
(2) (iv	<i>ı</i>) (iii)	(i)	(ii)
(3) (ii	i) (iv)	(i)	(ii)
(4) (ii	i) (i)	(iv	<i>J</i>) (ii)

Ans. (3)

- **116.** Identify the **correct** order of organisation of genetic material from largest to smallest :
 - (1) Chromosome, genome, nucleotide, gene
 - (2) Chromosome, gene, genome, nucleotide
 - (3) Genome, chromosomes, nucleotide, gene
 - (4) Genome, chromosome, gene, nucleotide

Ans. (4)

- **117.** Which one of the following hormones though synthesised elsewhere, is stored and released by the master gland ?
 - (1) Melanocyte stimulating hormone
 - (2) Antidiuretic hormone
 - (3) Luteinizing hormone
 - (4) Prolactin

Ans. (2)

- **118.** Read the different components from (a) to (d) in the list given below and tell the correct order of the components with reference to their arrangement from outer side to inner side in a woody dicot stem:
 - (a) Secondary cortex
 - (b) Wood
 - (c) Secondary phloem
 - (d) Phellem
 - The correct order is :

(1)	(d),	(c),	(a),	(b)	(2)	(c),	(d),	(b),	(a)	
(2)	(-)	(1-)	(_1)	(-)	(1)	(_1)	(-)	(-)	(1-)	

(3)	(a),	(6),	(a),	(C)	(4)	(a),	(a),	(C),	(0)

- **119.** Which of the following joints would allow no movement ?
 - (1) Ball and Socket joint
 - (2) Fibrous joint
 - (3) Cartilaginous joint
 - (4) Synovial joint

Ans. (2)

- **120.** Which one of the following is **not** applicable to RNA?
 - (1) Chargaff's rule
 - (2) Complementary base pairing
 - (3) 5' phosphoryl and 3' hydroxyl ends
 - (4) Heterocyclic nitrogenous bases

Ans. (1)

- **121.** Doctors use stethoscope to hear the sound; produced during each cardiac cycle. The second sound is heard when :
 - (1) AV node receives signal from SA node
 - (2) AV valves open up
 - (3) Ventricular walls vibrate due to gushing of blood from atria
 - (4) Semilunar valves close down after the blood flows into vessels from ventricles

Ans. (4)

- **122.** During ecological succession :
 - (1) the changes lead to a community that is in near equilibrium with the environment and is called pioneer community
 - (2) the gradual and predictable change in species composition occurs in a given area
 - (3) the establishment of a new biotic community is very fast in its primary phase
 - (4) the number and types of animals remain constant

Ans. (2)

123. In the following human pedigree, the filled symbols represent the affected individuals. Identify the type of given pedigree.

- (3) X-linked recessive
- (4) Autosomal recessive

Ans. (4)

124. Balbiani rings are sites of :

	8				
	(1) RNA and protein synthesis				
	(2) Lipid synthesis				
	(3) Nucleotide synthesis				
	(4) Polysaccharide synthes	sis			
Ans.	(1)				
125.	Name the pulmonary disease in which alveolar				
	surface area involved in gas exchange is drastically				
	reduced due to damage in the alveolar walls :				
	(1) Asthma	(2) Pleurisy			
	(3) Emphysema	(4) Pneumonia			
Ans.	(3)				
126.	Which the following are most suitable indicator of				
	SO_2 pollution in the environment ?				
	(1) Fungi	(2) Lichens			
	(3) Conifers	(4) Algae			

Ans. (2)

- **127.** Satellite DNA is important because it :
 - (1) Codes for enzymes needed for DNA replication
 - (2) Codes for proteins needed in cell cycle
 - (3) Shows high degree of polymorphism in population and also the same degree of polymorphism in an individual, which is heritable from parents to children
 - (4) Does not code for proteins and is same in all members of the population

Ans. (3)

- $\ensuremath{\textbf{128}}$. Industrial melanism is an example of :
 - (1) Neo Lamarckism (2) Neo Darwinism
 - (3) Natural selection (4) Mutation

Ans. (3)

- **129.** A column of water within xylem vessels of tall trees does **not** break under its weight because of :
 - (1) Positive root pressure
 - (2) Dissolved sugars in water
 - (3) Tensile strength of water
 - (4) Lignification of xylem vessels

Ans. (3)

- **130.** The introduction of t-DNA into plants involves :
 - (1) Allowing the plant roots to stand in water
 - (2) Infection of the plant by *Agrobacterium tumefaciens*
 - (3) Altering the pH of the soil, then heat shocking the plants
 - (4) Exposing the plants to cold for a brief period

Ans. (2)

131. Pick up the wrong statement :

- (1) Nuclear membrane is present in Monera
- (2) Cell wall is absent in Animalia
- (3) Protista have photosynthetic and heterotrophic modes of nutrition
- (4) Some fungi are edible

Ans. (1)

- **132.** In photosynthesis, the light-independent reactions take place at :
 - (1) Stromal matrix
 - (2) Thylakoid lumen
 - (3) Photosystem I
 - (4) Photosystem-II

Ans. (1)

133. Which of the following immunoglobulins does constitute the largest percentage in human milk?

(1) IgG	(2) IgD
(3) IgM	(4) IgA

Ans. (4)

134. Which of the following pairs is **not** correctly matched?

	Mode of reproduction	Example
(1)	Conidia	Penicillium
(2)	Offset	Water hyacinth
(3)	Rhizome	Banana
(4)	Binary fission	Sargassum

Ans. (4)

- **135.** The UN conference of Parties on climate change in the year 2012 was held at :
 - (1) Warsaw (2) Durban
 - (3) Doha (4) Lima
- Ans. (3)

14

136. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is :

(1)
$$\frac{5}{27}$$
 (2) $\frac{4}{9}$ (3) $\frac{9}{4}$ (4) $\frac{27}{5}$

Ans. (1)

Sol. For Lyman series

For

$$\begin{pmatrix} \frac{1}{\lambda_{\text{max}}} \end{pmatrix}_{\text{L}} = \text{R(1)}^{2} \begin{bmatrix} \frac{1}{(1)^{2}} - \frac{1}{(2)^{2}} \end{bmatrix}$$

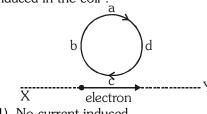
$$(\lambda_{\text{max}})_{\text{L}} = \frac{4}{3\text{R}}$$
Balmer series
$$\begin{pmatrix} \frac{1}{\lambda_{\text{max}}} \end{pmatrix}_{\text{B}} = \text{R(1)}^{2} \begin{bmatrix} \frac{1}{(2)^{2}} - \frac{1}{(3)^{2}} \end{bmatrix}$$

$$(\lambda_{\text{max}})_{\text{B}} = \frac{36}{5\text{R}}$$

$$\frac{(\lambda_{\text{max}})_{\text{L}}}{(\lambda_{\text{max}})_{\text{B}}} = \frac{4}{3\text{R}} \times \frac{5\text{R}}{36} = \frac{5}{27}$$

- (λ_{max})_B 3R 36 27 **137.** The energy of the em waves is of the order of 15 keV. To which part of the spectrum does it belong?
 - (1) γ-rays(2) X-rays(3) Infra-red rays(4) Ultraviolet rays

Ans. (2)


Sol. Wavelengh of the ray

$$\lambda = \frac{hc}{E}$$

since $\lambda < 100$ Å

so it is X-ray

138. An electron moves on a straight line path XY as shown. The abcd is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil ?

- (1) No current induced
- (2) abcd
- (3) adcd
- (4) The current will reverse its direction as the electron goes past the coil

Ans. (4)

Sol. First current develops in direction of abcd but when electron moves away, then magnetic field inside loop decreases & current changes its direction.

139. The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is V, the speed of the ejection of the liquid through the holes is :

(1)
$$\frac{V^2 R}{nr}$$
 (2) $\frac{V R^2}{n^2 r^2}$
(3) $\frac{V R^2}{nr^2}$ (4) $\frac{V R^2}{n^3 r^2}$

Ans. (3)

$$Av = constant$$

 $\pi R^2 V = n\pi r^2 v_1$

$$\Rightarrow v_1 = \frac{VR^2}{nr^2}$$

140. The Young's modulus of steel is twice that of brass. Two wires of same lenght and of same area of cross section, one of steel and another of brass are suspended from the same roof. If we want the lower ends of the wires to be at the same level, then the weights added to the steel and brass wires must be in the ratio of :

(1) 1:1 (2) 1:2 (3) 2:1 (4) 4:1Ans. (3)

Sol.
$$Y = \frac{F\ell}{A\Delta\ell} \Rightarrow \Delta\ell = \frac{F\ell}{AY}$$

 $(\Delta\ell)_{\text{steel}} = (\Delta\ell)_{\text{Brans}}$
 $\Rightarrow \frac{W_s\ell}{AY_s} = \frac{W_B\ell}{AY_B}$
 $\Rightarrow \frac{W_s}{W_B} = \frac{Y_s}{Y_B} = 2$

(1)
$$\frac{LE_0 r}{(r+r_1)\ell}$$
 (2)
$$\frac{LE_0 r}{\ell r_2}$$

(3)
$$\frac{E_0 r}{(r+r_1)} \cdot \frac{\ell}{L}$$
 (4)
$$\frac{E_0 \ell}{L}$$

Ans (3)

Sol. Potential gradient
$$x = \frac{ir}{L} = \frac{E_0}{(r_1 + r)} \frac{r}{L}$$

$$\therefore e.m.f. E = x\ell = \frac{E_0 r}{(r+r_1)} \cdot \frac{r}{L}$$

142. A particle is executing a simple harmonic motion. Its maximum acceleration is α and maximum velocity is β . Then, its time period of vibration will be :-

(1)
$$\frac{2\pi\beta}{\alpha}$$
 (2) $\frac{\beta^2}{\alpha^2}$ (3) $\frac{\alpha}{\beta}$ (4) $\frac{\beta^2}{\alpha}$

Ans (1)

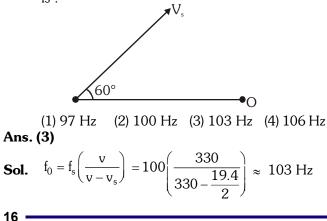
Sol. For S.H.M. Maximum acceleration = $\omega^2 A = \alpha$ Maximum velocity = $\omega A = \beta$

$$\Rightarrow \quad \omega = \frac{\alpha}{\beta} \Rightarrow \quad T = \frac{2\pi}{\omega} = \frac{2\pi\beta}{\alpha}$$

143. If vectors $\vec{A} = \cos \omega t \ \hat{i} + \sin \omega t \ \hat{j}$ and

 $\vec{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$ are founctions of time, then

the value of t at which they are orthogonal to each other is :


(1)
$$t = 0$$

(2) $t = \frac{\pi}{4\omega}$
(3) $t = \frac{\pi}{2\omega}$
(4) $t = \frac{\pi}{\omega}$

Ans (4)

Sol. $\vec{A} \cdot \vec{B} = 0$

$$\cos \omega t \cos \frac{\omega t}{2} + \sin \omega t \sin \frac{\omega t}{2} = 0$$
$$\cos \left(\omega t - \frac{\omega t}{2} \right) = 0 \implies \cos \frac{\omega t}{2} = 0$$
$$\Rightarrow \frac{\omega t}{2} = \frac{\pi}{2} \implies t = \frac{\pi}{\omega}$$

144. A source of sound S emitting waves of frequency 100 Hz and an observer O are located at some distance from each other. The source is moving with a speed of 19.4 ms⁻¹ at an angle of 60° with the source observer line as shown in the figure. The observer is at rest. The apparent frequency observed by the observer (velocity of sound in air 330 ms⁻¹) is :-

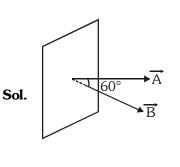
- **145.** An automobile moves on a road with a speed of 54 kmh^{-1} . The radius of its wheels is 0.45 m and the moment of inertia of the wheel about its axis of rotation is 3 kgm^2 . If the vehicle is brought to rest in 15s, the magnitude of average torque transmitted by its brakes to wheel is :-
 - (1) 2.86 kg m²s⁻²
 - (2) 6.66 kg m²s⁻²
 - (3) 8.58 kg m²s⁻²
 - (4) 10.86 kg m²s⁻²

Ans. (2)

Sol. Velocity of the automobile

$$v = 54 \times \frac{5}{18} = 15 \text{ m/s}$$

$$\omega_0 = \frac{v}{R} = \frac{15}{0.45} = \frac{100}{3}$$
 rad/s


so angular acceleration

$$\alpha = \frac{\Delta \omega}{t} = \frac{\omega_f - \omega_0}{t} = -\frac{100}{45} \text{ rad/s}^2$$

so Torque =
$$I\alpha = 3 \times \frac{100}{45} = 6.66 \text{ kg-m}^2 \text{s}^{-2}$$

146. A rectangular coil of length 0.12m and width 0.1m having 50 turns of wire is suspended vertically in a uniform magnetic field of strength 0.2 Weber/m². The coil carries a current of 2 A. If the plane of the coil is inclined at an angle of 30° with the direction of the field, the torque required to keep the coil in stable equilibrium will be :

Ans (3)

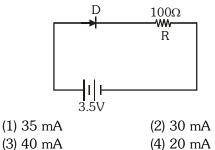
 $\vec{\tau} = \vec{M} \times \vec{B}$ $|\vec{\tau}| = MB \sin \theta = NIAB \sin \theta = 0.20 \text{ Nm}$ **147.** A parallel plate air capacitor has capacity 'C' distance of separation between plates is 'd' and potential difference 'V' is applied between the plates force of attraction between the plates of the parallel plate air capacitor is :

(1)
$$\frac{C^2 V^2}{2d^2}$$
 (2) $\frac{C^2 V^2}{2d}$ (3) $\frac{C V^2}{2d}$ (4) $\frac{C V^2}{d}$

Ans. (3)

- Sol. $F = \frac{Q^2}{2\epsilon_0 A}$ $\therefore Q = CV$ and $C = \frac{\epsilon_0 A}{d} \Rightarrow \epsilon_0 A = Cd$ So $F = \frac{C^2 V^2}{2Cd} = \frac{CV^2}{2d}$
- **148.** Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is :

(1)
$$\frac{1}{2}$$
 (2) $\frac{2}{3}$
(3) $\frac{3}{4}$ (4) 2


Ans. (3)

Sol. According to ideal gas equation

$$P = \frac{\rho RT}{M} \implies M = \frac{\rho RT}{P}$$

so $\frac{M_A}{M_B} = \frac{\rho_A}{\rho_B} \cdot \frac{T_A}{T_B} \cdot \frac{P_B}{P_A} = (1.5) (1) \left(\frac{1}{2}\right)$
 $\implies \frac{M_A}{M_B} = \frac{3}{4}$

- **149.** A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then,
 - (1) the acceleration of S is always directed towards the centre of the earth.
 - (2) the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
 - (3) the total mechanical energy of S varies periodically with time.
 - (4) the linear momentum of S remains constant in magnitude.

150. In the given figure, a diode D is connected to an external resistance $R = 100 \Omega$ and an e.m.f of 3.5V. If the barrier potential developed across the diode is 0.5 V, the current in the circuit will be :

Ans. (2)

Sol. Potential difference on R = 3.5 - 0.5 = 3.0 volt

Current in circuit i =
$$\frac{V}{R} = \frac{3}{100} = 30 \text{mA}$$

- **151.** A remote sensing satellite of earth revolves in a circular orbit at a height of 0.25×10^6 m above the surface of earth. If earth's radius is 6.38×10^6 m and g=9.8 ms⁻², then the orbital speed of the satellite is :
 - (1) 6.67 km s⁻¹ (2) 7.76 km s⁻¹
 - (3) 8.56 km s⁻¹ (4) 9.13 km s⁻¹

Ans. (2)

Sol. For the satellite revolving around earth

$$v_0 = \sqrt{\frac{GM_e}{(R_e th)}} = \sqrt{\frac{GM_e}{R_e \left(1 + \frac{h}{R_e}\right)}} = \sqrt{\frac{gR_e}{1 + \frac{h}{R_e}}}$$

substituting the values

$$v_0 = \sqrt{60 \times 10^6}$$
 m/s
 $v_0 = 7.76 \times 10^3$ m/s = 7.76 km/s

152. The position vector of a particle \vec{R} as a function of time is given by :-

 $\vec{R} = 4\sin(2\pi t)\hat{i} + 4\cos(2\pi t)\hat{j}$

Where R is in meters, t is in seconds and \hat{i} and \hat{j} denote unit vectors along x and y-directions, respectively. Which one of the following statements is wrong for the motion of particle ?

- (1) Path of the particle is a circle of radius 4 meter
- (2) Acceleration vectors is along $-\vec{R}$
- (3) Magnitude of acceleration vector is $\frac{v^2}{R}$ where v is the velocity of particle.
- (4) Magnitude of the velocity of particle is 8 meter/second

Ans. (4)

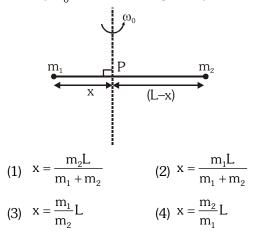
Ans. (1)

Sol. $\vec{R} = 4\sin(2\pi t) \hat{i} + 4\cos 2\pi t \hat{j}$

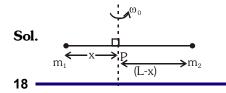
$$\vec{v} = \frac{d\vec{R}}{dt} = 8\pi\cos 2\pi t\,\hat{i} - 8\pi\sin 2\pi t\,\hat{j}$$
$$|\vec{v}| = 8\pi\sqrt{2}$$

153. A string is stretched between fixed points separated by 75.0 cm. It is observed to have resonant frequencies of 420 Hz and 315 Hz. There are no other resonant frequencies between these two. The lowest resonant frequencies for this string is :

(1)	105 Hz	(2) 155 Hz
(0)	005.11	


Ans. (1)

Sol. Two consecutive resonant frequencies for a string fixed at both ends will be


$$\frac{nv}{2\ell} \text{ and } \frac{(n+1)v}{2\ell}$$
$$\Rightarrow \frac{(n+1)v}{2\ell} - \frac{nv}{2\ell} = 420 - 315$$
$$\frac{v}{2\ell} = 105 \text{ Hz}$$

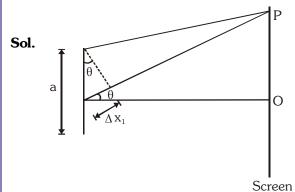
Which is the minimum resonant frequency

154. Point masses m_1 and m_2 are placed at the opposite ends of a rigid rod of length L, and negligible mass. The rod is to be set rotating about an axis perpendicular to it. The position of point P on this rod through which the axis should pass so that the work required to set the rod rotating with angular velocity ω_0 is minimum, is given by :-

Ans. (1)

The position of point P on rod through which the axis should pass so that the work required to set the rod rotating with minimum angular velocity ω_0 is their centre of mass

so
$$m_1 x = m_2 (L-x) \Rightarrow x = \frac{m_2 L}{m_1 + m_2}$$


155. At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the Huygen's wavelet from the edge of the slit and the wavelet from the mid point of the slit is :-

(4) π radian

(1)
$$\frac{\pi}{8}$$
 radian (2) $\frac{\pi}{4}$ radian

(3)
$$\frac{\pi}{2}$$
 radian

Ans. (4)

For first minima at P, a sin $\theta = \lambda$

So phase difference
$$\Delta \phi_1 = \frac{\Delta x_1}{\lambda} \times 2\pi$$
$$= \frac{(a/2)\sin\theta}{\lambda} \times 2\pi$$
$$\Delta \phi_1 = \frac{\lambda}{2\lambda} \times 2\pi = \pi \text{ radian}$$

156. A force $\vec{F} = \alpha \hat{i} + 3\hat{j} + 6\hat{k}$ is acting at a point $\vec{r} = 2\hat{i} - 6\hat{j} - 12\hat{k}$. The value of α for which angular momentum about origin is conserved is :

(1) 1	(2) -1
(3) 2	(4) zero

Ans. (2)

Sol. For conservation of angular momentum about origin

$$\sum \vec{\tau}_{net} = 0 \Longrightarrow \quad \vec{r} \times \vec{F} = 0 \quad \Rightarrow \alpha = -1$$

157. Two particles A and B, move with constant velocities \vec{v}_1 and \vec{v}_2 . At the initial moment their position vectors are \vec{r}_1 and \vec{r}_2 respectively. The condition for particle A and B for their collision is :-

(1)
$$\vec{r}_1 - \vec{r}_2 = \vec{\upsilon}_1 - \vec{\upsilon}_2$$
 (2) $\frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|} = \frac{\vec{\upsilon}_2 - \vec{\upsilon}_1}{|\vec{\upsilon}_2 - \vec{\upsilon}_1|}$
(3) $\vec{r}_1 \cdot \vec{\upsilon}_1 = \vec{r}_2 \cdot \vec{\upsilon}_2$ (4) $\vec{r}_1 \times \vec{\upsilon}_1 = \vec{r}_2 \times \vec{\upsilon}_2$
(2)

Ans. (2)

Sol. For two particles to collide, the direction of the relative velocity of one with respect to other should be directed towards the relative position of the other particle

i.e.
$$\frac{\vec{r_1} - \vec{r_2}}{|\vec{r_1} - \vec{r_2}|} \rightarrow \text{direction of relative position of } 1 \text{ w.r.t. } 2.$$

&
$$\frac{\vec{v}_2 - \vec{v}_1}{\left|\vec{v}_2 - \vec{v}_1\right|} \rightarrow$$
 direction of velocity of 2 w.r.t. 1

so for collision of A & B

$$\frac{\vec{r}_1 - \vec{r}_2}{\left|\vec{r}_1 - \vec{r}_2\right|} = \frac{\vec{v}_2 - \vec{v}_1}{\left|\vec{v}_2 - \vec{v}_1\right|}$$

- **158.** A nucleus of uranium decays at rest into nuclei of thorium and helium. Then :-
 - (1) The helium nucleus has less kinetic energy than the thorium nucleus
 - (2) The helium has more kinetic energy than the thorium nucleus.
 - (3) The helium nucleus has less momentum than the thorium nucleus.
 - (4) The helium nucleus has more momentum than the thorium nucleus.

Ans. (2)

Sol. By COLM :

$$\begin{array}{l} p_{f}=\ p_{i}=\ 0\\ \Rightarrow \ p_{He}-\ p_{Th}=\ 0 \Rightarrow p_{He}=\ p_{Th}\\ \text{but} \ K \propto \displaystyle \frac{1}{m} \ \text{and} \ m_{He} < m_{Th} \ \text{So} \ K_{He} > K_{Th} \end{array}$$

159. Two metal wires of identical dimensions are connected in series. If σ_1 and σ_2 are the conductivities of the metal wires respectively, the effective conductivity of the combination is :-

(1)
$$\frac{\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$$
 (2) $\frac{2\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$

(3)
$$\frac{\sigma_1 + \sigma_2}{2\sigma_1\sigma_2}$$
 (4) $\frac{\sigma_1 + \sigma_2}{\sigma_1\sigma_2}$

Ans. (2)

Sol.
$$\begin{array}{c} \sigma_{1} & \sigma_{2} \\ \ell & \ell \\ R_{eq} = R_{1} + R_{2} \\ \Rightarrow \frac{2\ell}{\sigma_{eq}A} = \frac{\ell}{\sigma_{1}A} + \frac{\ell}{\sigma_{2}A} \Rightarrow \sigma_{eq} = \frac{2\sigma_{1}\sigma_{2}}{\sigma_{1} + \sigma_{2}} \end{array}$$

- **160.** Light of wavelength 500 nm is incident on a metal with work function 2.28 eV. The de Broglie wavelength of the emitted electron is :-(1) $\leq 2.8 \times 10^{-12}$ m (2) $< 2.8 \times 10^{-10}$ m
 - (3) $< 2.8 \times 10^{-9} \text{ m}$ (4) $\ge 2.8 \times 10^{-9} \text{ m}$

Ans. (4)

Sol. Energy of photon (E) = $\frac{12400}{5000}$ = 2.48 eV

Work function $(\phi_0) = 2.28 \text{ eV}$ According to eigenstein equation

$$E = \phi_0 + (K.E.)_{max}$$

$$\Rightarrow 2.,48 = 2.28 + (K.E.)_{max}$$

$$\Rightarrow (K.E.)_{max} = 0.20 \text{ eV}$$
For electron $\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \approx 28 \text{ Å}$
So $\lambda \ge 2.8 \times 10^{-9} \text{ m}$

161. 4.0 g of a gas occupies 22.4 litres at NTP. The specific heat capacity of the gas at constant volume is 5.0 JK⁻¹ mol⁻¹. If the speed of sound in this gas at NTP is 952 ms⁻¹, then the heat capacity at constant pressure is (Take gas constant R = 8.3 JK⁻¹ mol⁻¹) (1) $e^{5} = W^{-1} = 1^{-1} = (0) = 0$ $W^{-1} = 1^{-1}$

(1)
$$8.5 \text{ JK}^{-1} \text{ mol}^{-1}$$
 (2) $8.0 \text{ JK}^{-1} \text{ mol}^{-1}$
(3) $7.5 \text{ JK}^{-1} \text{ mol}^{-1}$ (4) $7.0 \text{ JK}^{-1} \text{ mol}^{-1}$

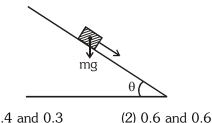
Sol. Molecular mass M = 4.0 g

$$_{\text{pund}} = \sqrt{\frac{\gamma RT}{M}} \Rightarrow \gamma = \frac{Mv^2}{RT} = 1.6$$

So, Cp = $\gamma C_v = 1.6 \times 5.0 = 8.0 \text{ J K}^{-1} \text{ mol}^{-1}$

- **162.** A series R-C circuit is connected to an alternating voltage source. Consider two situations :-
 - (a) When capacitor is air filled.
 - (b) When capacitor is mica filled.

Current through resistor is i and voltage across capacitor is V then :-


(1)
$$V_a = V_b$$
 (2) $V_a < V_b$
(3) $V_a > V_b$ (4) $i_a > i_b$

Ans. (3)

Sol. When capacitor is filled with mica then capacitance C increases so X_{C} decreases

In case (b) $X_C \downarrow$ so voltage across capacitor decreases. so $V_a > V_b$

163. A plank with a box on it at one end is gradually raised about the other end. As the angle of inclination with the horizontal reaches 30°, the box starts to slip and slides 4.0 m down the plank in 4.0s. The coefficients of static and kinetic friction between the box and the plank will be, respectively :

(1) 0.4 and 0.3(2) 0.6 and 0.6(3) 0.6 and 0.5(4) 0.5 and 0.6

Ans. (3)

Sol. Coefficient of static friction,

$$\mu_{s} = \tan 30^{\circ} = \frac{1}{\sqrt{3}} = 0.6$$

$$a = gsin30^\circ - \mu_{\kappa}g cos30^\circ$$

$$S = ut + \frac{1}{2} at^{2}$$
$$\Rightarrow 4 = \frac{1}{2} \left[\frac{g}{2} - \frac{\mu_{k} g \sqrt{3}}{2} \right] \times 16 \Rightarrow \mu_{k} = 0.5$$

164. Two stones of masses m and 2 m are whirled in

horizontal circles, the heavier one in a radius $\frac{r}{2}$ and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when they experience same centripetal forces. The value of n is :

(1) 1 (2) 2 (3) 3

Ans. (2)

Sol. $(F_C)_{heavier} = (F_C)_{lighter}$

$$\Rightarrow \frac{2mV^2}{(r/2)} = \frac{m(nV)^2}{r} \Rightarrow n^2 = 4 \Rightarrow n = 2$$

165. The coefficient of performance of a refrigerator is 5. If the temperature inside freezer is −20°C, the temperature of the surroundings to which it rejects heat is :

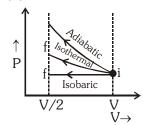
(1) 21℃	(2) 31°C
(3) 41℃	(4) 11℃

Ans. (2)

Sol. Coefficient of performance of refrigerator 20

$$COP = \frac{T_L}{T_H - T_L}$$
Where $T_L \rightarrow$ lower Temperature
& $T_H \rightarrow$ Higher Temperature
So, $5 = \frac{T_L}{T_H - T_L}$
 $\Rightarrow T_H = \frac{6}{5}T_L = \frac{6}{5}(253) = 303.6 \text{ K}$

166. An ideal gas is compressed to half its initial volume by means of several processes. Which of the process results in the maximum work done on the gas ?


(4) Isochoric

(1) Isothermal (2) Adiabatic

(3) Isobaric

Ans. (2)

Sol.

work done on the gas

$$W_{isochoric} = 0$$

d $W_{adiabatia} > W_{Iaatha}$

of 20 m with an initial velocity v_0 . It collides with the ground, loses 50 percent of its energy in collision and rebounds to the same height. The initial velocity v_0 is : (Take g = 10 ms⁻²)

(1)
$$10 \text{ ms}^{-1}$$
 (2) 14 ms^{-1}

(3)
$$20 \text{ ms}^{-1}$$
 (4) 28 ms^{-1}

Ans. (3)

(4) 4

Sol. Let ball rebounds with speed V so

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20 \text{ m/s}$$

Energy just after rebound

$$\mathsf{E} = \frac{1}{2} \times \mathsf{m} \times \mathsf{v}^2 = 200 \ \mathsf{m}$$

50% energy loses in collision means just before collision energy is $400\ {\rm m}$

By using energy conservation

$$\frac{1}{2}mv_0^2 + mgh = 400m$$
$$\Rightarrow \frac{1}{2}mv_0^2 + m \times 10 \times 20 = 400m \Rightarrow v_0 = 20 \text{ m/s}$$

168. On a frictionless surface, a block of mass. M moving at speed v collides elastically with another block of same mass M which is initially at rest. After collision the first block moves at an angle θ to its initial

direction and has a speed $\frac{v}{3}$. The second block's

speed after the collision is :-

(1)
$$\frac{\sqrt{3}}{2}\upsilon$$
 (2) $\frac{2\sqrt{2}}{3}\upsilon$ (3) $\frac{3}{4}\upsilon$ (4) $\frac{3}{\sqrt{2}}\upsilon$

Ans. (2)

Sol. In elastic collision energy of system remains same

 $(K.E)_{before \ collision} = (K.E)_{After \ collision}$ Let speed of second body after collision is V

$$\frac{1}{2}mv^{2} + 0 = \frac{1}{2}m\left(\frac{v}{3}\right)^{2} + \frac{1}{2}m(v')^{2} \Rightarrow v' = \frac{2\sqrt{2}}{3}v$$

- **169.** If potential (in volts) in a region is expressed as V(x,y,z) = 6xy - y + 2yz, the electric field (in N/C) at point (1,1,0) is :
 - (1) $-(6\hat{i}+9\hat{j}+\hat{k})$ (2) $-(3\hat{i}+5\hat{i}+3\hat{k})$ (3) $-(6\hat{i}+5\hat{i}+2\hat{k})$ (4) $-(2\hat{i}+3\hat{i}+\hat{k})$

Ans. (3)

Sol.
$$\vec{E} = -\frac{\partial V}{\partial x}\hat{i} - \frac{\partial V}{\partial y}\hat{j} - \frac{\partial V}{\partial z}\hat{k}$$

 $\vec{E} = -(6y)\hat{i} - (6x - 1 + 2z)\hat{j} - (2y)\hat{k}$
at point (1,1,0)
 $\vec{E} = -6\hat{i} - 5\hat{j} - 2\hat{k} = -(6\hat{i} + 5\hat{j} + 2\hat{k})$

170. Two slits in Youngs experiment have widths in the ratio 1: 25. The ratio of intensity at the maxima

and minima in the interference pattern, $\frac{I_{max}}{I}$ is : (1) $\frac{4}{9}$ (2) $\frac{9}{4}$ (3) $\frac{121}{49}$ (4) $\frac{49}{121}$ Ans. (2) **Sol.** $\frac{I_1}{I_2} = \frac{W_1}{W_2} = \frac{1}{25} \implies \frac{I_2}{I_1} = \frac{25}{1}$ $\frac{I_{max}}{I_{min}} = \frac{\left(\sqrt{I_2} + \sqrt{I_1}\right)^2}{\left(\sqrt{I_2} - \sqrt{I_1}\right)^2} = \left(\frac{\sqrt{\frac{I_2}{I_1}} + 1}{\sqrt{\frac{I_2}{I_1}} - 1}\right)^2$ $=\left(\frac{5+1}{5-1}\right)^2 = \left(\frac{6}{4}\right)^2 = \frac{9}{4}$

171. The heart of a man pumps 5 litres of blood through the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be 13.6×10^3 kg/m³ and $g = 10 \text{m/s}^2$ then the power of heart in watt is: (1) 1.50(2) 1.70(3) 2.35(4) 3.0

Ans. (2)

Sol. Pressure = 150 mm Hg

Pumping rate
$$= \frac{dV}{dt} = \frac{5 \times 10^{-3}}{60} \text{ m}^3/\text{s}$$

Power of heart $= P.\frac{dV}{dt} = \rho gh \times \frac{dV}{dt}$
 $= (13.6 \times 10^3 \text{ kg/m}^3) (10) \times (0.15) \times \frac{5 \times 10^{-3}}{60}$
 $= \frac{13.6 \times 5 \times 0.15}{6} = 1.70 \text{ watt}$

172. A proton and an alpha particle both enter a region of uniform magnetic field, B, moving at right angles to the field B. If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by proton is 1 MeV, the energy acquired by the alpha particle will be :-

Ans. (1)

Sol.
$$R = \frac{mv}{q_B} = \frac{\sqrt{2mK}}{q_B}$$

 $\therefore R_{\alpha} = R_p$
 $\therefore \frac{4m_{\alpha}k_a}{q_{\alpha}^2 B^2} = \frac{4m_pK_p}{q_p^2 B^2}$

$$\Rightarrow \frac{4m_pk_a}{4\sigma^2} = \frac{m_p(1MeV)}{\sigma^2} \Rightarrow K_{\alpha} = 1MeV$$

173. The input signal given to a CE amplifier having a

voltage gain of 150 is $V_i = 2 \cos \left(15t + \frac{\pi}{2} \right)$. The corresponding output signal will be -

(1) 300 cos $\left(15t + \frac{4\pi}{3}\right)$ (2) 300 cos $\left(15t + \frac{\pi}{3}\right)$ (3) 75 cos $\left(15t + \frac{2\pi}{3}\right)$ (4) 2 cos $\left(15t + \frac{5\pi}{6}\right)$

Ans. (1)

Sol. Input signal $v_{in} = 2 \cos(15t + \frac{\pi}{3})$

Voltage Gain = 150

CE amplifier gives phase difference of π between input and output signals

$$A_{v} = \frac{V_{0}}{V_{in}} \text{ so } V_{0} = A_{V} V_{in}$$

so $V_{0} = 150 \times 2 \cos (15t + \frac{\pi}{3} + \pi)$
 $V_{0} = 300 \cos (15t + \frac{4\pi}{3})$

174. In dimension of critical velocity v_c , of liquid following through a tube are expressed as $(\eta^x \ \rho^y \ r^z)$, where η , ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by :

(1) 1, 1, 1	(2) 1, -1, -1
(3) -1, -1, 1	(4) -1, -1, -1

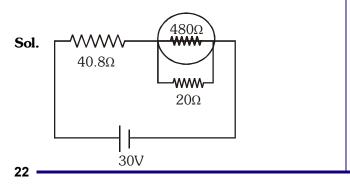
Ans. (2)

Sol. $v_c \propto [\eta^x \ \rho^y \ r^z]$

 $[L^1T^{\text{-}1}] \propto [M^1\,L^{-1}\,T^{-1}]^x \; [M^1\,L^{-3}\,]^y \; [L^1]^z$

$$[L^1T^{-1}] \propto [M^{x+y}] [L^{-x-3y+z}] [T^{-x}]$$

taking comparision on both size


$$x + y = 0, -x - 3y + z = 1, -x = -1$$

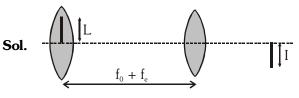
 \Rightarrow x = 1, y = -1, z = -1

175. A circuit contains an ammeter, a battery of 30 V and a resistance 40.8 ohm all connected in series. If the ammeter has a coil of resistance 480 ohm and a shunt of 20 ohm, the reading in the ammeter will be :-

(1) 1 A (2) 0.5 A (3) 0.25 A (4) 2 A

Ans. (2)

$$\begin{aligned} R_{eff} &= 40.8 + \frac{480 \times 20}{480 + 20} = 40.8 + 19.2 = 60 \ \Omega \\ I &= \frac{V_{eff}}{R_{eff}} = 0.5 A \end{aligned}$$


- **176.** Water rises to height 'h' in capillary tube. If the length of capillary tube above the surface of water is made less than 'h', then -
 - (1) water does not rise at all.
 - (2) water rises up to the tip of capillary tube and then starts overflowing like a fountain.
 - (3) water rises up to the top of capillary tube and stays there without overflowing.
 - (4) water rises upto a point a little below the top and stays there.

Ans. (3)

177. In an astronomical telescope in normal adjustment a straight black line of length L is drawn on inside part of objective lens. The eye-piece forms a real image of this line. The length of this image is I. The magnification of the telescope is :

(1)
$$\frac{L}{I}$$
 (2) $\frac{L}{I} + 1$
(3) $\frac{L}{I} - 1$ (4) $\frac{L+I}{L-I}$

Ans. (1)

Magnification of telescope,

$$M = \frac{f_0}{f_e}$$

Here $\frac{f_e}{f_e + u} = -\frac{I}{L}$

$$\Rightarrow \qquad \frac{f_e}{f_e - (f_0 + f_e)} = -\frac{I}{L}$$

$$\Rightarrow \qquad \frac{f_e}{f_0} = \frac{I}{L}$$

Therefore $M = \frac{L}{I}$

- **178.** The value of coefficient of volume expansion of glycerin is $5 \times 10^{-4} \text{ K}^{-1}$. The fractional change in the density of glycerin for a rise of 40°C in its temperature, is :-
 - (1) 0.010
 - (2) 0.015
 - (3) 0.020
 - (4) 0.025

Sol. $d_f = \frac{d_i}{(1 + \gamma \Delta T)}$

fractional change

$$= \frac{d_i - d_f}{d_i} = 1 - \frac{d_f}{d_i}$$
$$= 1 - (1 + \gamma \Delta T)^{-1}$$
$$= 1 - (1 - \gamma \Delta T)$$
$$\because (1+x)^n \approx 1 + nx$$
$$= \gamma \Delta T$$
$$= 5 \times 10^{-4} \times 40$$
$$= 0.020$$

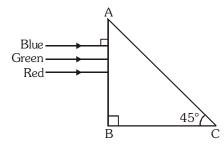
179. A photoelectric surface is illuminated successively

by monochromatic light of wavelength λ and $\frac{\lambda}{2}$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface of the material is :

(h = Plank's constant, c = speed of light)

(1)
$$\frac{hc}{3\lambda}$$

(2) $\frac{hc}{2\lambda}$


(3)
$$\frac{hc}{\lambda}$$

(4) $\frac{2hc}{\lambda}$

Ans. (2)

Sol.
$$KE_1 = \frac{hc}{\lambda} - \phi$$

 $KE_2 = \frac{hc}{\lambda/2} - \phi = \frac{2hc}{\lambda} - \phi$
 $KE_2 = 3KE_1$
 $\Rightarrow \frac{2hc}{\lambda} - \phi = 3\left(\frac{hc}{\lambda} - \phi\right)$
 $\Rightarrow 2\phi = \frac{hc}{\lambda}$
 $\Rightarrow \phi = \frac{hc}{2\lambda}$

180. A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive index of the material of the prism for the above red, green and blue wavelengths are 1.39, 1.44 and 1.47, respectively.

The prism will :-

- (1) separate the red colour part from the green and blue colours
- (2) separate the blue colour part from the red and green colours
- (3) separate all the three colours from one another
- (4) not separate the three colours at all

Ans. (1)

Sol.
$$\mu = \frac{1}{\sin i_c} = \frac{1}{\sin 45^\circ} = \sqrt{2} = 1.414$$

: (μ_{red} = 1.39) < μ , μ_v > μ ; μ_g > μ

only red colur do not suffer total internal reflection.